SEMI-INDUSTRIAL TECHNOLOGY FOR SYNTHESIS OF 2-(1,3-DITHIOLAN-2-YLIDENE) MALONONITRILE

  • Konstantin V. Lipin Chuvash State University
Keywords: 1,3-dithioheterocycles, 1,3-dithiolanes, sulfur-containing heterocycles

Abstract

This article analyzes the developments of the scientific team of the Chemical and Pharmaceutical Faculty of Chuvash State University I.N. Ulyanov in the field of synthesis of 1,3-dithioheterocycles and based on them a method of synthesis of 2-(1,3-dithiolane-2-ylidene) malononitrile suitable for scaling was developed. The basis was chosen for the well-known three-component synthesis method, which has several disadvantages: the use of toxic and inaccessible reagents, multi-stage. During laboratory testing, this method of synthesis was improved. The developed method for producing 2-(1,3-dithiolane-2-ylidene)malononitrile consists of reacting malononitrile with carbon disulfide in the presence of potassium carbonate, adding dichloroethane to the resulting mixture, and boiling the mixture for 10-15 min. The final compound is isolated by diluting the reaction mass with water. Based on the developed method, a technological scheme for the synthesis of 2- (1,3-dithiolane-2-ylidene)malononitrile was compiled. The selected production method consists of four technological operations: mixing the starting components in the reactor, heating and boiling the reaction mixture, diluting the reaction mass with water and crystallizing the product, filtering 2-(1,3-dithiolane-2-ylidene)malononitrile. The first three stages can be carried out in one technological equipment - a reactor equipped with a stirrer and a jacket. For filtering it is necessary to use a nutsche filter. Based on the developed methodology, a technological scheme has been created, its description has been compiled. The design process capacity is 5 kg/h of 2-(1,3-dithiolane-2-ylidene)malononitrile. The necessary equipment is calculated. A standard mixing reactor with a volume of 0.1 m3 and a nutsche filter NFP-0.25-630 PP were selected. To mix the reaction mass, the reactor should be equipped with an anchor type mixer. The developed technology compares favorably with the use of simple and cheap raw materials common in the chemical industry, the short synthesis time and the use of standard technological equipment.

References

Robertson N., Cronin L. Metal bis-1,2-dithiolene com-plexes in conducting or magnetic crystalline assemblies. Coord. Chem. Rev. 2002. V. 227. P. 93-127. DOI: 10.1016/S0010-8545(01)00457-X.

Eisenberg R. Trigonal prismatic coordination in tris(dithiolene) com-plexes: guilty or just non-innocent? Coord. Chem. Rev. 2011. V. 255. P. 825-836. DOI: 10.1016/j.ccr.2010.09.003.

Hissler M., McGarrah J.E., Connick W.B., Geiger D.K., Cummings S.D., Eisenberg R. Platinum diimine complex-es: towards a molecular photochemical device. Coord. Chem. Rev. 2000. V. 208. P. 93-127. DOI: 10.1016/S0010-8545(00)00254-X.

Lazarides T., McCormick T.M., Wilson K.C., Lee S., McCamant D.W., Eisenberg R. Sensitizing the sensitizer: the synthesis and photophysical study of bodipy−pt(ii)(diimine)(dithiolate) conjugates. J. Am. Chem. Soc. 2011. V. 133. P. 350-364. DOI: 10.1021/ja1070366.

Fourmigué M. Paramagnetic cp/dithiolene complexes as molecular hinges: interplay of metal/ligand electronic delocalization and solid-state magnetic behavior. Acc. Chem. Res. 2004. V. 37. P. 179-186. DOI: 10.1021/ar030214w.

Nomura M., Cauchy T., Fourmigué M. Radical CpNi(dithiolene) and CpNi(diselenolene) complexes: Synthetic routes and molecular properties. Coord. Chem. Rev. 2010. V. 254. P. 1406-1418. DOI: 10.1016/j.ccr.2009.11.010.

Tsukada S., Shibata Y., Sakamoto R., Kambe T., Ozeki T., Nishihara H. Ir3Co6 and Co3Fe3 dithiolene cluster complexes: multiple metal–metal bond formation and correlation between structure and internuclear electronic communication. Inorg. Chem. 2012. V. 51. P. 1228-1230. DOI: 10.1021/ic202548g.

Sakamoto R., Kambe T., Tsukada S., Takada K., Hoshi-ko K., Kitagawa Y., Okumura M., Nishihara H. π-conjugated trinuclear group-9 metalladithiolenes with a tri-phenylene backbone. Inorg. Chem. 2013. V. 52. P. 7411-7416. DOI: 10.1021/ic400110z.

Eisenberg R., Gray H.B. Noninnocence in metal com-plexes: a dithiolene dawn. Inorg. Chem. 2011. V. 50. P. 9741-9751. DOI: 10.1021/ic2011748.

Papavassiliou G.C., Anyfantis G.C., Mousdis G.A. Neutral Metal 1,2-dithiolenes: preparations, properties and possible applications of unsymmetrical in comparison to the symmetrical. Crystals. 2012. V. 2. P. 762-811. DOI: 10.3390/cryst2030762.

Kato R. Conducting metal dithiolene complexes: structural and electronic properties. Chem. Rev. 2004. V. 104. P. 5319-5346. DOI: 10.1021/cr030655t.

Kato R. Development of π-electron systems based on [M(dmit)2] (M = Ni and Pd; dmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals. Bull. Chem. Soc. Jpn. 2014. V. 87. P. 355-374. DOI: 10.1246/bcsj.20130290.

Mebrouk K., Chotard F., Le Goff-Gaillard C., Arlot-Bonnemains Y., Fourmigué M., Camerel F. Water-soluble nickelbis(dithiolene) complexes as photothermal agents. Chem. Commun. 2015. V. 51. P. 5268-5270. DOI: 10.1039/C4CC08231A.

Mebrouk K., Camerel F., Jeannin O., Heinrich B., Don-nio B., Fourmigué M. High photothermal activity within neutral nickel dithiolene complexes derived from imidazolium-based ionic liquids. Inorg. Chem. 2016. V. 55. P. 1296-1303. DOI: 10.1021/acs.inorgchem.5b02648.

Zheng B., Sabatini R.P., Fu W.-F., Eum M.-S., Brennessel W.W., Wang L., McCamant D.W., Eisenberg R. Light-driven generation of hydrogen: new chromophore dyads for increased activity based on bodipy dye and Pt(diimine)(dithiolate) complexes. Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. E3987-E3996. DOI: 10.1073/pnas.1509310112.

Lv H., Ruberu T.P.A., Fleischauer V.E., Brennessel W.W., Neidig M.L., Eisenberg R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes. J. Am. Chem. Soc. 2016. V. 138. P. 11654-11663. DOI: 10.1021/jacs.6b05040.

Dong R., Pfeffermann M., Liang H., Zheng Z., Zhu X., Zhang J., Feng X. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2015. V. 54. P. 12058-12063. DOI: 10.1002/anie.201506048.

Kambe T., Sakamoto R., Hoshiko K., Takada K., Miyachi M., Ryu J.-H., Sasaki S., Kim J., Nakazato K., Takata M., Nishihara H. π-conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013. V. 135. P. 2462-2465. DOI: 10.1021/ja312380b.

Kambe T., Sakamoto R., Kusamoto T., Pal T., Fukui N., Hoshiko K., Shimojima T., Wang Z., Hirahara T., Ishi-zaka K., Hasegawa S., Liu F., Nishihara H. Redox control and high conductivity of nickel bis(dithiolene) com-plex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 2014. V. 136. P. 14357-14360. DOI: 10.1021/ja507619d.

Yamashita M., Nakata N., Senshu Y., Nagata M., Yamamoto H.M., Kato R., Shibauchi T., Matsuda Y. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science. 2010. V. 328. P. 1246-1248. DOI: 10.1126/science.1188200.

Ishikawa T., Hayes S.A., Keskin S., Corthey G., Hada M., Pichugin K., Marx A., Hirscht J., Shionuma K., On-da K., Okimoto Y., Koshihara S., Yamamoto T., Cui H., Nomura M., Oshima Y., Abdel-Jawad M., Kato R., Miller R.J.D. Direct observation of collective modes coupled to molecular orbital–driven charge transfer. Science. 2015. V. 350. P. 1501-1505. DOI: 10.1126/science.aab3480.

Pop F., Avarvari N. Chiral metal-dithiolene complexes. Coord. Chem. Rev. 2016. V. 346. P. 20-31. DOI: 10.1016/j.ccr.2016.11.015.

Pareja L., Colazzo M., Pérez-Parada A., Besil N., Heinzen H., Böcking B., Cesio V., Fernández-Alba A.R. Oc-currence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing. J. Agric. Food Chem. 2012. V. 60. P. 4440-4448. DOI: 10.1021/jf205293j.

Li J.-J., Liang X.-M., Jin Sh.-H., Zhang J.-J., Yuan H.-Zh., Qi Sh.-H., Chen F.-H., Wang D.-Q. Synthesis, fungicidal activity, and structure−activity relationship of spiro-compounds containing macrolactam (macrolactone) and thiadiazoline rings. J. Agric. Food Chem. 2010. V. 58. P. 2659-2663. DOI: 10.1021/jf903665f.

Selvi A.A., Manonmani H.K. Detection of isoprothiolane in food, soil, and water samples by immunosorbent assay using avian antibodies. J. Immunoass. Immunoch. 2013. V. 34. P. 149-165. DOI: 10.1080/15321819.2012.699492.

Toan P.V., Sebesvari Z., Bläsing M., Rosendahl I., Re-naud F.G. Pesticide management and their residues in sediments and surface and drinking water in the mekong del-ta, vietnam. Sci. Total Environ. 2013. V. 452-453. P. 28-39. DOI: 10.1016/j.scitotenv.2013.02.026.

Nishina T., Kien C.N., Noi N.V., Ngoc H.M., Kim C.S., Tanaka S., Iwasaki K. Pesticide residues in soils, sedi-ments, and vegetables in the red river delta, Northern Vi-etnam. Environ. Monit. Assess. 2010. V. 169. P. 285-297. DOI: 10.1007/s10661-009-1170-8.

Kojima H., Sata F., Takeuchi S., Sueyoshi T., Nagai T. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology. 2011. V. 280. P. 77-87. DOI: 10.1016/j.tox.2010.11.008.

Липин К.В., Ершов О.В., Беликов М.Ю., Федосеев С.В. Синтез некоторых представителей 2-илиден-1,3-дитиоланов. Журн. орг. химии. 2017. Т. 53. № 1. С. 148-150. DOI: 10.1134/S1070428017010304. Lipin K.V., Ershov O.V., Belikov M.Y., Fedoseev S.V. Synthesis of some 2-ylidene-1,3-dithiolanes. Russ. J. Org. Chem. 2017. V. 53. N 1. P. 147-149. DOI: 10.1134/S1070428017010304.

Липин К.В., Ершов О.В., Беликов М.Ю., Федосеев С.В. Однореакторный синтез 2-илиден-1,3-дитиоланов. Журн. орг. химии. 2019. Т. 55. № 2. С. 314-316. DOI: 10.1134/S1070428019020246. Lipin K.V., Ershov O.V., Belikov M.Y., Fedoseev S.V. One-pot synthesis of 2-ylidene-1,3-dithiolanes. Russ. J. Org. Chem. 2019. V. 55. N 2. P. 276-278. DOI: 10.1134/S1070428019020246.

Published
2020-04-17
How to Cite
Lipin, K. V. (2020). SEMI-INDUSTRIAL TECHNOLOGY FOR SYNTHESIS OF 2-(1,3-DITHIOLAN-2-YLIDENE) MALONONITRILE. ChemChemTech, 63(4), 68-73. https://doi.org/10.6060/ivkkt.20206304.6124
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)