ПОЛИМЕРНЫЕ БИОКОМПОЗИТЫ НА ОСНОВЕ АГРООТХОДОВ: ЧАСТЬ I. ИСТОЧНИК, КЛАССИФИКАЦИЯ, ХИМИЧЕСКИЙ СОСТАВ И МЕТОДЫ ОБРАБОТКИ ЛИГНОЦЕЛЛЮЛОЗНЫХ ПРИРОДНЫХ ВОЛОКОН

ЧАСТЬ I. ИСТОЧНИК, КЛАССИФИКАЦИЯ, ХИМИЧЕСКИЙ СОСТАВ И МЕТОДЫ ОБРАБОТКИ ЛИГНОЦЕЛЛЮЛОЗНЫХ ПРИРОДНЫХ ВОЛОКОН

  • Nushaba B. Arzumanova Институт Полимерных Материалов НАН Азербайджана
  • Najaf T. Kakhramanov Институт Полимерных Материалов НАН Азербайджана
Ключевые слова: биокомпозит, экологически чистый, агроотход, натуральное волокно, модификация поверхности

Аннотация

В настоящее время истощение природных ресурсов и проблемы окружающей среды вызвали огромный интерес в поиске устойчивой альтернативы для создания новых материалов, которые являются экологически чистыми. В последние годы многие исследователи сосредоточились на исследованиях, связанных с сельскохозяйственными отходами, для решения экологических проблем, связанных с удалением агроотходов. Благодаря своей ежегодной возобновляемости и способности к биологическому разложению, агроотходы за последние два десятилетия стали экологически чистой альтернативой синтетическим волокнам. В связи с этим, в данном обзоре дано общее представление о новых лигноцеллюлозных полимерных композиционных материалах, в которых в качестве наполнителей и армирующих добавок используются различные природные волокна. А также приведены источники, классификация и химический состав лигноцеллюлозных натуральных волокон. Натуральные волокна включают функциональную группу, названную гидроксильной группой, которая делает волокна гидрофильными. Гидрофильные натуральные волокна и гидрофобная полимерная матрица приводят к несовместимости и слабой межфазной связи между ними. Для устранения проблемы несовместимости растительных волокон с неполярными полимерными матрицами в статье рассмотрены различные методы обработки поверхности натурального волокна, включая физическую, химическую и биологическую обработку. С этой точки зрения, по нашему мнению, данные, представленные в этой статье, могут быть использованы в качестве базы данных для дальнейшего изучения агроотходов в качестве наполнителей или армирующих добавок в полимерных композитах с целью ускорения развития и стимулирования коммерческого производства этих новых материалов.

Биография автора

Najaf T. Kakhramanov, Институт Полимерных Материалов НАН Азербайджана

заведующий лабораторией "Механо-химическая модификация и переработка полимеров"

Литература

Motaung T. E., Linganiso L.Z. Critical review on agro waste cellulose applications for biopolymers. Int. J. Plast. Technol. 2018. V. 22. N 1. P. 185-216. DOI: 10.1007/s12588-018-9219-6.

Nevarez L.M., Casarrubias L.B., Canto O.S., Celzard A., Fierro V., Gomez R.I., Sanchez G.G. Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohyd. Polym. 2011. V. 86. N 2. P. 732-741. DOI: 10.1016/j.carbpol.2011.05.014.

Mulinari D.R., da Silva M.L.C.P. Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Car-bohyd. Polym. 2008. V. 74. N 3. P. 617-620. DOI: 10.1016/j.carbpol.2008.04.014.

Hassan S.B., Oghenevweta J.E., Aigbodion V.S. Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Composites Part B: Eng. 2012. V. 43. N 5. P. 2230-2223. DOI: doi.org/10.1016/j.compositesb.2012.02.003.

Akil H.M., Omar F.M., Mazuki A.A.M., Safiee S. Kenaf fiber reinforced composites: a review. Mater. Design. 2011. V. 32. N 8-9. P. 4107-4121. DOI: 10.1016/j.matdes.2011.04.008.

Gholampour A.A., Ozbakkaloglu T. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020. V. 55. N 3. P. 829-892. DOI: 10.1007/s10853-019-03990-y.

Shalwan A., Yousif B.F. In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Design. 2013. V. 44. P. 14-24. DOI: 10.1016/j.matdes.2012.07.014.

Yao F., Wu Q., Lei Y., Xu Y. Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Indust. Crops Products. 2008. V. 28. N 1. P. 63-72. DOI: 10.1016/j.indcrop.2008.01.007.

Yildizhan Sh., Chalik A., Ozcanli M., Serin H. Biocomposite materials: a short review of recent trends, me-chanical and chemical properties, and applications. Europ. Mechan. Sci. 2018. V. 2. N 3. P. 83-91. DOI: 10.26701/ems.369005.

Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000-2010. Progr. Polym. Sci. 2012. V. 37. N 11. P. 1552-1596. DOI: 10.1016/j.progpolymsci.2012.04.003.

Faruk O., Ain M.S. Biofiber reinforced polymer composites for structural applications. In: Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. Woodhead Publishing Series in Civil and Structural Engineering. 2013. P. 18-53. DOI: 10.1533/9780857098955.1.18.

Santucci B.S., Bras J., Belgacem M.N., Curvelo A.A. da S., Pimenta M.T.B. Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. In-dust. Crops Products. 2016. V. 91. P. 238-248. DOI: 10.1016/j.indcrop.2016.07.017.

Abdul Khalil H.P.S., Bhat I.U.H., Jawaid M., Zaidon A., Hermawan D., Hadi Y.S. Bamboo fibre reinforced bio-composites: a review. Mater. Design. 2012. V. 42. P. 353-368. DOI: 10.1016/j.matdes.2012.06.015.

Butkute B., Lemeziene N., Kanapeckas J., Navickas K., Dabkevičius Z., Venslauskas K. Cocksfoot, tall fescue and reed canary grass: Dry matter yield, chemical composition and biomass convertibility to methane. Biomass Bio-ener. 2014. V. 66. P. 1-11. DOI: 10.1016/j.biombioe.2014.03.014.

Yeng C.M., Husseinsyah S., Ting S.S. A comparative study of different crosslinking agent-modified chi-tosan/corn cob biocomposite films. Polym. Bull. 2015. V. 72. N 4. P. 791-808. DOI: 10.1007/s00289-015-1305-8.

Gurunathan T., Mohanty S., Nayak S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Appl. Sci. Manufact. 2015. V. 77. P. 1-25. DOI: 10.1016/j.compositesa.2015.06.007.

El Boustani M., Lebrun G., Brouillette F., Belfkira A. Effect of a solvent-free acetylation treatment on rein-forcements permeability and tensile behaviour of flax/epoxy and flax/wood fibre/epoxy composites. Canad. J. Chem. Eng. 2017. V. 95. N 6. P. 1082-1092. DOI: 10.1002/cjce.22777.

Loiacono S., Crini G., Martel B., Chanet G., Cosentino C., Raschetti M., Placet V., Torri G., Morin‐Crini N. Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp-based felt. II. Chemi-cal modification. J. Appl. Polymer Sci. 2017. V. 134. N 32. P. 1-14. DOI: 10.1002/app.45138.

Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced compo-sites: a review. J. Polym. Environ. 2007. V. 15. N 1. P. 25-33. DOI: 10.1007/s10924-006-0042-3.

Luo X., Benson R.S., Kit K.M., Dever M. Kudzu fiber-reinforced polypropylene composite. J. Appl. Polym. Sci. 2002. V. 85. N 9. P. 1961-1969. DOI: 10.1002/app.10762.

Bacci L., Baronti S., Predieri S., di Virgilio N. Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Indust. Crops Products. 2009. V. 29. N 2-3. P. 480-484. DOI: 10.1016/j.indcrop.2008.09.005.

Angelini L.G., Scalabrelli M., Tavarini S., Cinelli P., Anguillesi I., Lazzeri A. Ramie fibers in a comparison be-tween chemical and microbiological retting proposed for application in biocomposites. Indust. Crops Products. 2015. V. 75. P. 178-184. DOI: 10.1016/j.indcrop.2015.05.004.

Sun R.C., Fang J.M., Goodwin A., Lawther J.M., Bolton A.J. Fractionation and characterization of polysaccharides from abaca fibre. Carbohyd. Polym. 1998. V. 37. N 4. P. 351-359. DOI: 10.1016/S0144-8617(98)00046-0.

Fuqua M.A., Huo S., Ulven C.A. Natural Fiber Reinforced Composites. Polym. Rev. 2012. V. 52. N 3. P. 259-320. DOI: 10.1080/15583724.2012.705409.

Devireddy S.B.R., Biswas S. Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polym. Comp. 2017. V. 38. N 7. P. 1396-1403. DOI: 10.1002/pc.23706.

Aguilar-Rios A., Herrera-Franco P.J., Martinez-Gomez A. de J., Valadez-Gonzalez A. Improving the bonding be-tween henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments. Ex-press Polym. Lett. 2014. V. 8. N 7. P. 491-504. DOI: 10.3144/expresspolymlett.2014.53.

Reddy N., Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005. V. 23. N 1. P. 22-27. DOI: 10.1016/j.tibtech.2004.11.002.

Ramakrishna G., Sundararajan T. Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement Concrete Comps. 2005. V. 27. N 5. P. 575-582. DOI: 10.1016/j.cemconcomp.2004.09.008.

Malkapuram R., Kumar V., Yuvraj S.N. Recent devel-opment in natural fiber reinforced polypropylene compo-sites. J. Reinforc. Plast. Compos. 2009. V. 28. N 10. P. 1169-1189. DOI: 10.1177/0731684407087759.

Hori K., Flavier M.E., Kuga S., Lam T.B.T., Iiyama K. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application. J. Wood Sci. 2000. V. 46. N 5. P. 401-404. DOI: 10.1007/BF00776404.

Rahmi R., Lelifajri L., Julinawati J., Shabrina S. Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohyd. Polym. 2017. V. 170. P. 226-233. DOI: 10.1016/j.carbpol.2017.04.084.

Jawaid M., Abdul Khalil H.P.S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd. Polym. 2011. V. 86. N 1. P. 1-18. DOI: 10.1016/j.carbpol.2011.04.043.

Mwaikambo L., Ansell M. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials I. Hemp fibres. J. Mater. Sci. 2006. V. 41. N 8. P. 2483-2496. DOI: 10.1007/s10853-006-5098-x.

Klemm D., Heublein B., Fink H.P., Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Internat. Ed. 2005. V. 44. N 22. P. 3358-3393. DOI: 10.1002/anie.200460587.

Visakh P.M., Thomas S. Preparation of bionanomaterials and their polymer nanocomposites from waste and bio-mass. Waste Biomass Valorization. 2010. V. 1. N 1. P. 121-134. DOI: 10.1007/s12649-010-9009-7.

Hubbe M.A., Ayoub A., Daystar J.S., Venditti R.A., Pawlak J.J. Enhanced absorbent products incorporating cellulose and its derivatives: a review. Bioresources. 2013. V. 8. N 4. P. 6556-6629. DOI: 10.15376/biores.8.4.6556-6629.

Azwa Z.N., Yousif B.F., Manalo A.C., Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Design. 2013. V. 47. P. 424-442. DOI: 10.1016/j.matdes.2012.11.025.

Patel J.P., Parsania P.H. Characterization, testing, and reinforcing materials of biodegradable composites. In: Bi-odegradable and Biocompatible Polymer Composites: Processing, Properties and Applications. Woodhead Publishing Series in Composites Science and Engineering. 2018. P. 55-79. DOI: 10.1016/B978-0-08-100970-3.00003-1.

Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015. V. 2015. P. 1-15. DOI: 10.1155/2015/243947.

Cruz J., Fangueiro R. Surface modification of natural fibers: a review. Proceed. Eng. 2016. V. 155. P. 285-288. DOI: 10.1016/j.proeng.2016.08.030.

Ferreira D.P., Cruz J., Fangueiro R. Surface modification of natural fibers in polymer composites. Green Com-posites for Automotive Applications. Woodhead Publishing Series in Composites Science and Engineering. 2019. P. 3-41. DOI: 10.1016/B978-0-08-102177-4.00001-X.

Imoisili P.E., Dagogo I.T., Popoola A.W., Okoronkwo A.E. Effect of high-frequency microwave radiation on the mechanical properties of plantain (Musa paradisiaca) fi-bre/epoxy biocomposite. J. Phys. Sci. 2018. V. 29. N 3. P. 23-35. DOI: 10.21315/jps2018.29.3.3.

Ali A., Shaker K., Nawab Y., Jabbar M. Hussain T., Militky J., Baheti V. Hydrophobic treatment of natural fibers and their composites – a review. J. Indust. Textiles. 2018. V. 47. N 8. P. 2153-2183. DOI: 10.1177/1528083716654468.

Koohestani B., Darban A.K., Mokhtari P., Yilmaz E., Darezereshki E. Comparison of different natural fiber treatments: a literature review. Int. J. Environ. Sci. Technol. 2019. V. 16. N 1. P. 629-642. DOI: 10.1007/s13762-018-1890-9.

Kalia S, Kaith B.S., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in pol-ymer composites: a review. Polym. Eng. Sci. 2009. V. 49. N 7. P. 1253-1272. DOI: 10.1002/pen.21328.

Mukhopadhyay S., Fangueiro R. Physical modification of natural fibers and thermoplastic films for composites – a review. J. Thermoplast. Compos. Mater. 2009. V. 22. N 2. P. 135-162. DOI: 10.1177/0892705708091860.

Zille A., Oliveira F.R., Souto A.P. Plasma treatment in textile industry. Plasma Proc. Polym. 2015. V. 12. N 2. P. 98-131. DOI: 10.1002/ppap.201400052.

Kan C.W., Man W.S. Surface Characterisation of Atmos-pheric Pressure Plasma Treated Cotton Fabric – Effect of Operation Parameters. Polymers. 2018. V. 10. N 3. P. 1-14. DOI: 10.3390/polym10030250.

Brunengo E., Conzatti L., Utzeri R., Vicini S., Scatto M., Falzacappa E.V., Castellano M., Stagnaro P. Chemical modification of hemp fibres by plasma treatment for eco-composites based on biodegradable polyester. J. Mater. Sci. 2019. V. 54. P. 14367-14377. DOI: 10.1007/s10853-019-03932-8.

Bozaci E., Sever K., Sarikanat M., Seki Y., Demir A., Ozdogan E., Tavman I. Effects of the atmospheric plas-ma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials. Composites Part B: Eng. 2013. V. 45. N 1. P. 565-572. DOI: 10.1016/j.compositesb.2012.09.042.

Adekunle K.F. Surface treatments of natural fibres – a review: Part 1. Open J. Polym. Chem. 2015. V. 5. N 3. P. 41-46. DOI: 10.4236/ojpchem.2015.53005.

Ragoubi M., Bienaimé D., Molina S., George B., Merlin A. Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Indust. Crops Products. 2010. V. 31. N 2. P. 344-349. DOI: 10.1016/j.indcrop.2009.12.004.

Bozaci E., Sever K., Demir A., Seki Y., Sarikanat M., Ozdogan E. Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers Polym. 2009. V. 10. P. 781-786. DOI: 10.1007/s12221-009-0781-6.

Islam M.R., Beg M.D.H., Gupta A., Mina M.F. Optimal performances of ultrasound treated kenaf fiber reinforced recycled polypropylene composites as demonstrated by response surface method. J. Appl. Polym. Sci. 2013. V. 128. N 5. P. 2847-2856. DOI: 10.1002/app.38454.

Li Q., Lin T., Wan X. Effects of ultrasonic treatment on wool fibre and fabric properties. J. Textile Instititute. 2012. V. 103. N 6. P. 662-668. DOI: 10.1080/00405000.2011.597569.

Tavares T.D., Antunes J.C., Ferreira F., Felgueiras H.P. Biofunctionalization of natural fiber-reinforced biocom-posites for biomedical applications. Biomolecules. 2020. V. 10. N 1. E148. P. 1-44. DOI: 10.3390/biom10010148.

Bodur M.S., Bakkal M., Sonmez H.E. The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016. V. 50. N 27. P. 3817-3830. DOI: 10.1177/0021998315626256.

Oushabi A., Sair S., Oudrhiri Hassani F., Abboud Y., Tanane O., El Bouari A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF-polyurethane composite. South African J. Chem. Eng. 2017. V. 23. P. 116-123. DOI: 10.1016/j.sajce.2017.04.005.

Rebelo V., Silva Y., Ferreira S., Filho R.T., Giacon V. Effects of mercerization in the chemical and morphologi-cal properties of amazon piassava. Polimeros. 2019. V. 29. N 1. e2019013. P. 1-6. DOI: 10.1590/0104-1428.01717.

Hamidon M.H., Sultan M.T.H., Ariffin A.H., Shah A.U.M. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J. Mater. Res. Technol. 2019. V. 8. N 3. P. 3327-3337. DOI: 10.1016/j.jmrt.2019.04.012.

Meenakshi C.M., Krishnamoorthy A. Study on the Effect of Surface Modification on the Mechanical and Thermal Behaviour of Flax, Sisal and Glass Fiber-Reinforced Epoxy Hybrid Composites. J. Renew. Mater. 2019. V.7. N 2. P. 153-169. DOI: 10.32604/jrm.2019.00046.

Krishnaiah P., Ratnam C.T., Manickam S. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason. Sonochem. 2017. V. 34. P. 729-742. DOI: 10.1016/j.ultsonch.2016.07.008.

Jha K., Kataria R., Verma J., Pradhan S. Potential bio-degradable matrices and fiber treatment for green composites: A review. AIMS Mater. Sci. 2019. V. 6. N 1. P. 119-138. DOI: 10.3934/matersci.2019.1.119.

Xie Y., Hill C.A.S., Xiao Z., Militz H., Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Composites Part A: Appl. Sci. Manufact. 2010. V. 41. N 7. P. 806-819. DOI: 10.1016/j.compositesa.2010.03.005.

Oushabi A., Hassani F.O., Abboud Y., Sair S., Tanane O., El Bouari A. Improvement of the interface bonding between date palm fibers and polymeric matrices using alkali-silane treatments. Internat. J. Ind. Chem. 2018. V. 9. N 4. P. 335-343. DOI: 10.1007/s40090-018-0162-3.

Atiqah A., Jawaid M., Sapuan S.M., Ishak M.R. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermo-plastic polyurethane. J. Nat. Fibers. 2018. V. 15. N 2. P. 251-261. DOI: 10.1080/15440478.2017.1325427.

Pickering K.L., Efendy M.G.A., Le T.M. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Appl. Sci.Manufact. 2016. V. 83. P. 98-112. DOI: 10.1016/j.compositesa.2015.08.038.

Kabir M.M., Wang H., Lau K.T., Cardona F. Tensile properties of chemically treated hemp fibres as reinforce-ment for composites. Composites Part B: Eng. 2013. V. 53. P. 362-368. DOI: 10.1016/j.compositesb.2013.05.048.

Zaman H.U., Khan R.A. Acetylation used for natural fiber/polymer composites. J. Thermoplast. Comp. Mater. 2019. P. 1-21. DOI: 10.1177/0892705719838000.

Lu N., Oza S., Tajabadi M.G. Surface modification of natural fibers for reinforcement in polymeric composites. Surf. Modificat. Biopolym. 2015. P. 224-237. DOI: 10.1002/9781119044901.ch9.

Kalia S., Dufresne A., Cherian B.M., Kaith B.S., Ave´rous L., Njuguna J., Nassiopoulos E. Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011. V. 2011. N 837875. P. 1-35. DOI: 10.1155/2011/837875.

Radoor S., Karayil J., Rangappa S.M., Siengchin S., Parameswaranpillai J. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. Express Polym. Lett. 2020. V. 14. N 4. P. 309-335. DOI: 10.3144/expresspolymlett.2020.27.

Kalia S., Kaushik V.K., Sharma R.K. Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. J. Nat. Fibers. 2011. V. 8. N 1. P. 27-38. DOI: 10.1080/15440478.2011.551002.

Punyamurthy R., Sampathkumar D., Ranganagowda R.P.G., Bennehalli B., Srinivasa C.V. Mechanical proper-ties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J. King Saud Univ. Eng. Sci. 2017. V. 29. N 3. P. 289-294. DOI: 10.1016/j.jksues.2015.10.004.

Punyamurthy R., Sampathkumar D., Ranganagowda R.P.G., Bennehalli B., Badyankal P., Srinivasa C.V. Sur-face modification of abaca fiber by benzene diazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites. Ciencia e Tecnologia dos Materiais. 2014. V. 26. N 2. P. 142-149. DOI: 10.1016/j.ctmat.2015.03.003.

Huner U. Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Mater. Express. 2017. V. 7. N 2. P. 134-144. DOI: 10.1166/mex.2017.1359.

Santos E., Mauler R.S., Nachtigall S.M.B. Effectiveness of maleated- and silanized-PP for coir fiber-filled composites. J. Reinforc. Plast. Composit. 2009. V. 28. N 17. P. 2119-2129. DOI: 10.1177/0731684408091704.

Akonda M.H., El-Dessouky H.M. Effect of maleicanhydride grafting on the properties of flax reinforced polypropylene textile composites. J. Textile Sci. Technol. 2019. V. 5. P. 69-85. DOI: 10.4236/jtst.2019.54007.

Jordan W., Chester P. Improving the properties of banana fiber reinforced polymeric composites by treating the fibers. Proceed. Eng. 2017. V. 200. P. 283-289. DOI: 10.1016/j.proeng.2017.07.040.

Kaushik V.K., Kumar A., Kalia S. Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. Int.. J. Textile Sci. 2012. V. 1. N 6. P. 101-105. DOI: 10.5923/j.textile.20120106.07.

Naidu A.L., Duppala A.K. A study on different chemical treatments for natural fiber reinforced composites. Internat. J. Mechan. Product. Eng. Res. Develop. 2018. V. 8. N 5. P. 143-152. DOI: 10.24247/ijmperdoct201818.

Sreenivasan V.S., Rajini N., Alavudeen A., Arumugaprabu V. Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Ef-fect of fiber length, fiber loading and chemical treatment. Composites Part B: Eng. 2015. V. 69. P. 76-86. DOI: 10.1016/j.compositesb.2014.09.025.

Dogan S.D., Tayfun U., Dogan M. New route for modifying cellulosic fibres with fatty acids and its application to polyethylene/jute fibre composites. J. Compos. Mater. 2016. V. 50. N 18. P. 2477-2485. DOI: 10.1177/0021998315604706.

Dolez P.I., Arfaoui M.A., Dube M., David E. Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proceed. Eng. 2017. V. 200. P. 81-88. DOI: 10.1016/j.proeng.2017.07.013.

Roy K., Debnath S.C., Tzounis L., Pongwisuthiruchte A., Potiyaraj P. Effect of various surface treatments on the performance of jute fibers filled natural rubber (NR) composites. Polymers. 2020. V. 12. N 2. P. 1-15. DOI: 10.3390/polym12020369.

Torres F.G., Cubillas M.L. Study of the interfacial properties of natural fibre reinforced polyethylene. Polym. Test. 2005. V. 24. N 6. P. 694-698. DOI: 10.1016/j.polymertesting.2005.05.004.

Salem I.A.S., Rozyanty A.R., Betar B.O., Adam T., Mohammed M., Mohammed A.M. Study of the effect of sur-face treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite. J. Phys.: Conf. Ser. 2017. V. 908:012001. P. 1-8. DOI: 10.1088/1742-6596/908/1/012001.

Kiattipanich N., Kreua-ongarjnukool N, Pongprayoon T., Phalakornkule C. Properties of polypropylene composites reinforced with stearic acid treated sugarcane fiber. J. Polym. Eng. 2007. V. 27. N 6-7. P. 411-428. DOI: 10.1515/POLYENG.2007.27.6-7.411.

George M., Mussone P.G., Bressler D.C. Surface and thermal characterization of natural fibres treated with en-zymes. Indust. Crops Prod. 2014. V. 53. P. 365-373. DOI: 10.1016/j.indcrop.2013.12.037.

Araujo R., Casal M., Cavaco-Paulo A. Application of enzymes for textile fibres processing. Biocatal. Biotransform. 2008. V. 26. N 5. P. 332-349. DOI: 10.1080/10242420802390457.

Karaduman Y., Gokcan D., Onal L. Effect of enzymatic pretreatment on the mechanical properties of jute fiber-reinforced polyester composites. J. Compos. Mater. 2012. V. 47. N 10. P. 1293-1302. DOI: 10.1177/0021998312446826.

Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Eng. 2012. V. 43. N 7. P. 2883-2892. DOI: 10.1016/j.compositesb.2012.04.053.

Cragg S.M., Beckham G.T., Bruce N.C., Bugg T.D.H., Distel D.L., Dupree P., Etxabe A.G., Goodell B.S., Jelli-son J., McGeehan J.E., McQueen-Mason S.J., Schnorr K., Walton P.H., Watts J.E.M., Zimmer M. Lignocellu-lose degradation mechanisms across the tree of life. Curr. Opin. Chem. Biol. 2015. V. 29. P. 108-119. DOI: 10.1016/j.cbpa.2015.10.018.

Khoshnava S.M., Rostami R., Ismai M., Valipour A. The using fungi treatment as green and environmentally process for surface modification of natural fibres. Appl. Mechan. Mater. 2014. V. 554. P. 116-122. DOI: 10.4028/www.scientific.net/AMM.554.116.

Khoshnava S.M., Rostami R., Ismai M., Valipour A. The using fungi treatment as green and environmentally process for surface modification of natural fibres. Appl. Mechan. Mater. 2014. V. 554. P. 116-122. DOI: 10.4028/www.scientific.net/AMM.554.116.

Huang Y., Zhu C., Yang J., Nie Y., Chen C., Sun D. Recent advances in bacterial cellulose. Cellulose. 2014. V. 21. N 1. P. 1-30. DOI: 10.1007/s10570-013-0088-z.

Kalia S., Thakur K., Celli A., Kiechel M.A., Schauer C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng. 2013. V. 1. N 3. P. 97-112. DOI: 0.1016/j.jece.2013.04.009.

Lee K.Y., Bharadia P., Blaker J.J., Bismarck A. Short sisal fibre reinforced bacterial cellulose polylactide nano-composites using hairy sisal fibres as reinforcement. Composites Part A: Appl. Sci. Manufact. 2012. V. 43. N 11. P. 2065-2074. DOI: 10.1016/j.compositesa.2012.06.013.

Опубликован
2021-04-11
Как цитировать
Arzumanova, N. B., & Kakhramanov, N. T. (2021). ПОЛИМЕРНЫЕ БИОКОМПОЗИТЫ НА ОСНОВЕ АГРООТХОДОВ: ЧАСТЬ I. ИСТОЧНИК, КЛАССИФИКАЦИЯ, ХИМИЧЕСКИЙ СОСТАВ И МЕТОДЫ ОБРАБОТКИ ЛИГНОЦЕЛЛЮЛОЗНЫХ ПРИРОДНЫХ ВОЛОКОН. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 64(4), 4-14. https://doi.org/10.6060/ivkkt.20216404.6293
Раздел
Обзорные статьи