STUDYING MICROWAVE ACOUSTIC SENSORS BASED ON SYNTHETIC DIAMOND SUBSTRATES

  • Boris P. Sorokin Technological Institute for Superhard and Novel Carbon Materials
  • Nikita O. Asafiev Technological Institute for Superhard and Novel Carbon Materials
  • Denis A. Scherbakov Technological Institute for Superhard and Novel Carbon Materials
  • Gennadiy M. Kvashnin Technological Institute for Superhard and Novel Carbon Materials
  • Nicolay V. Luparev Technological Institute for Superhard and Novel Carbon Materials
Keywords: HBAR, microwave band, acoustoelectronic sensor device, thin and ultrathin film deposition, synthetic diamond, aluminum nitride

Abstract

Sensory properties of microwave diamond-based HBAR developed on the piezoelectric layered structure “Al/AlN/Mo/(100) diamond” were investigated by depositing the Al, Sc, and Mo thin and ultrathin films. Due to the increased quality factor in a microwave band inherent in this type of resonators, it is possible realizing a high sensitivity of the sensory element. The dependences of an overtone’s frequency shift vs. a film thickness could be differed qualitatively from the linearly proportional ones. Such peculiarities were explained in terms of an acoustic impedance difference between the films and diamond substrate. The features in the dependences of a frequency shift vs a film thickness can be used to determine the phase velocity of a film material. Experimental results were in close accordance with Finite Element Modeling data. Real thickness sensitivity of about 5 nm is actually limited by the imperfection of modern thickness measurement tools. Prototypes of sensory elements have the important advantages over all other types of the acoustoelectronic sensors owing to the microwave operating frequencies up to 8 GHz, high chemical and biological inertness of the working diamond surface, resistance to the temperature load, abrasive wear resistance, and the possibility of a multiple-time application. Effective area of a sensory element can be equal to thousands of square microns or less, which makes it suitable for local measurements. Investigated diamond-based 5th layered piezoelectric structure should be considered as a prospective platform creating a number of new generation sensors. 

References

Schedin F., Geim A.K., Hill E.W., Blake P., Novoselov K.S. Detection of individual gas molecules adsorbed on

graphene. Nat. Mater. 2007. V. 6. N 9. P. 652–655. DOI: 10.1038/nmat1967.

Johnson L., Gupta A. K., Ghafoor A., Akin D., Bashir R. Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy. Sensors Actuators B. Chem. 2006. V. 115. P. 189–197. DOI: 10.1016/j.snb.2005.08.047.

Ilic B., Czaplewski D., Craighead H.G., Neuzil P., Campagnolo C., Batt C. Mechanical resonant immunospecific

biological detector. Appl. Phys. Lett. 2000. V. 77. P. 450–452. DOI: 10.1063/1.127006.

Lavrik N.V., Datskos P.G. Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl. Phys. Lett. 2003. V. 82. P. 2697–2699. DOI: 10.1063/1.1569050.

Dantham V.R., Holler S., Kolchenko V., Wan Z., Arnold S. Taking whispering gallery-mode single virus detection

and sizing to the limit. Appl. Phys. Lett. 2012. V. 101. P. 043704. DOI: 10.1063/1.4739473.

Ekinci K.L., Huang X.M.H., Roukes M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett.

V. 84. P. 4469–4471. DOI: 10.1063/1.1755417.

Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung.

Zeitschrift für Physik. 1959. B. 155. Z. 206–222. DOI: 10.1007/BF01337937.

Lu C.S., Lewis O. Investigation of film-thickness determination by oscillating quartz resonators with large mass load. J. Appl. Phys. 1972. V. 43. N 11. P. 4385–4390. DOI: 10.1063/1.1660931.

Muratsugu M., Ohta F., Miya Y., Hosokawa T., Kurosawa S., Kamo N., Ikeda H. Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal. Chem. 1993. V. 65. N 20. P. 2933–2937. DOI: 10.1021/ac00068a036.

Qiao X., Zhang X., Tian Yu, Meng Y. Progresses on the theory and application of quartz crystal microbalance. Appl. Phys. Rev. 2016. V. 3. P. 031106. DOI: 10.1063/1.4963312.

Wen W., Shitang H., Shunzhou L., Minghua L., Yong P. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors&Actuators B. Chem. 2007. V. 125. N 2. P. 422–427. DOI: 10.1016/j.snb.2007.02.037.

Zhang H., Kim E.S. Micromachined acoustic resonant mass sensor. J. Microelectromech. Systems. 2005. V. 14. P. 699–706. DOI: 10.1109/JMEMS.2005.845405.

Lin Re-Ching, Chen Ying-Chung, Chang Wei-Tsai, Cheng Chien-Chuan, Kao Kuo-Sheng. Highly sensitive mass sensor using film bulk acoustic resonator. Sensors Actuators A: Physical. 2008. V. 147. P. 425–429. DOI: 10.1016/j.sna.2008.05.011.

Rey-Mermet S., Lanz R., Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sensors Actuators B. 2006. V. 114. P. 681–686. DOI: 10.1016/j.snb.2005.04.047.

Wingqvist G., Bjurström J., Liljeholm L., Yantchev V., Katardjiev I. Shear mode AlN thin film electro-acoustic

resonant sensor operation in viscous media. Sensors Actuators B. 2007. V. 123. P. 466–473. DOI: 10.1016/j.snb.

09.028.

Mansfeld G.D., Alekseev S.G., Kotelyansky I.M. Acoustic HBAR spectroscopy of metal (W, Ti, Mo, Al) thin films. Proc. of the IEEE Ultrasonics Symp. Atlanta, USA. 2001. P. 415-418. DOI: 10.1109/ULTSYM.2001.991652.

Rabus D., Friedt J.M., Ballandras S., Baron T., Lebrasseur É., Carry É. High-overtone bulk-acoustic resonator

gravimetric sensitivity: Towards wideband acoustic spectroscopy. J. Appl. Phys. 2015. V. 118. P. 114505. DOI:

1063/1.4930032.

Sorokin B.P., Kvashnin G.M., Novoselov A.S., Bormashov V.S., Golovanov A.V., Burkov S.I., Blank V.D.

Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20 GHz. Ultrasonics. 2017. V. 78. P. 162–165. DOI: 10.1016/j.ultras.2017.01.014.

Sorokin B.P., Telichko A.V., Kvashnin G.M., Bormashov V.S., Blank V.D. Investigations of microwave acoustic

damping in a multifrequency resonator using bulk acoustic waves based on a synthetic diamond single crystal. Akust. Zhurn. 2015. V. 61. N 6. P. 705-717 (in Russian) DOI: 10.7868/S0320791915050160.

Smirnov A.V., Asafiev N.O., Sorokin B.P., Ziangirova M.Yu., Golishkin A.V., Krasnopol’skaya L.M., Kuznetsova I.E. Investigation of the effect of sensor films prepared from the mycelium of basidial fungi on the characteristics of the Me1/AlN/Me2/diamond microwave resonator. Radiotekh. Elektron. 2020. V. 65. N 11. P. 1137–1144 (in Russian). DOI: 10.31857/S0033849420110169.

Sorokin B.P., Kvashnin G.M., Bormashov V.S., Volkov A.P., Telichko A.V., Gordeev G.I., Golovanov A.V.

Technology of manufacturing piezoelectric thin film transducer on substrate of synthetic diamond single crystal. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2014. V. 57. N 5. P. 17–21 (in Russian).

Sorokin B.P., Kvashnin G.M., Telichko A.V., Burkov S.I., Blank V.D. Piezoelectric layered structure based on

the synthetic diamond. In: Piezoelectric Materials. Ed. by T. Ogawa. Intech, Rijeka. 2016. P. 161–199. DOI:

5772/62630.

Shvyd’ko Yu., Stoupin S., Blank V., Terentyev S. Near100% Bragg reflectivity of X-rays. Nature Photonics. 2011.

V. 5. P. 539–542. DOI: 10.1038/NPHOTON.2011.197.

Published
2020-11-23
How to Cite
Sorokin, B. P., Asafiev, N. O., Scherbakov, D. A., Kvashnin, G. M., & Luparev, N. V. (2020). STUDYING MICROWAVE ACOUSTIC SENSORS BASED ON SYNTHETIC DIAMOND SUBSTRATES. ChemChemTech, 63(12), 63-70. https://doi.org/10.6060/ivkkt.20206312.10у
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)