MODIFICATION OF CHITOSAN BY THIOUREA DIOXIDE

  • Ekaterina V. Naidenko Ivanovo State University of Chemistry and Technology
  • Sergei V. Makarov Ivanovo State University of Chemistry and Technology
  • Elizaveta A. Pokrovskaya Ivanovo State University of Chemistry and Technology
  • Anton M. Nikulin Ivanovo State University of Chemistry and Technology
Keywords: chitosan, guanidines, modification, thiourea dioxide, hydrogen peroxide, oxidation

Abstract

Thiourea dioxide (TDO, aminoiminomethanesulfinic acid, formamidinesulfinic acid) was used for the chemical modification of chitosan. The interaction of TDO with chitosan in the presence of alkali results in the guanidinylated chitosan, the substitution degree is 0.25-0.27 and does not depend largely on molar ratio of thiourea dioxide to chitosan. The structure of modified chitosan has been proved using UV and IR spectroscopy as well as elemental analysis. It is shown that modification of chitosan proceeds under mild conditions. Contrary to chitosan, its guanidinylated derivative has biocidal properties against Gram-positive and Gram-negative bacteria in the aqueous solutions close to neutral (pH 6.2). It can be explained by the partial substitution of amino groups by guanidine groups existing predominantly in the protonated form in the neutral aqueous solutions. The system thiourea dioxide-hydrogen peroxide was used for the oxidative modification of chitosan. It is shown that thiourea dioxide and hydrogen peroxide separately do not oxidize chitosan but in the presence of their mixture the formation of carboxylic groups in chitosan has been observed. The quantity of carboxylic groups in the modified and native chitosan has been determined by the titration with sodium hydroxide. The presence of carboxylic groups has been proved also using IR spectroscopy. It is shown that the quantity of carboxylic groups increases with the increase of the ratio [TDO]/[chitosan].

References

Phillips G.O., Williams P.A. Handbook of hydrocolloids. SPb: GIORD. 2006. 536 p. (in Russian).

Omura Y., Shigemoto M., Akiyama T., Saimoto H., Shigemasa Y., Nakamura I., Tsuchido T. Antimicrobial ac-tivity of chitosan with different degrees of acetylation and molecular weights. Biocontrol Sci. 2003. V. 8. N 1. P. 25-30. DOI: 10.4265/bio.8.25.

Liu H., Du Y., Wang X., Sun L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004. V. 95. N 2. P. 147-155.

Hu Y., Du Y., Yang J., Kennedy J.F., Wang X., Wang L. Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydr. Polymers. 2007. V. 67. N 1. P. 66-72. DOI: 10.1016/j.carbpol.2006.04.015.

He B., Shao Y., Liang M., Li J., Cheng Y. Biodiesel production from soybean oil by guanidinylated chitosan. Fuel. 2015. V. 159. P. 33-39. DOI: 10.1016/j.fuel.2015.06.038.

Makarov S.V., Horváth A.K., Silaghi-Dumitrescu R., Gao Q. Sodium Dithionite, Rongalite and Thiourea Ox-ides. Chemistry and Application. Singapore: World Scientific. 2016. 219 p.

Makarov S.V., Horváth A.K., Silaghi-Dumitrescu R., Gao Q. Recent developments in the chemistry of thiourea oxides. Chem. Eur. J. 2014. V. 20. P. 14164-14176. DOI: 10.1002/chem.201403453.

Jursic B.S., Neumann D., McPherson A. Preparation of N-Formamidinylamino Acids from Amino and Formamidinesulfinic Acids. Synthesis. 2000. N 12. P. 1656-1658. DOI: 10.1055/s-2000-8201.

Shallu, Sharma M.L., Singh J. First total synthesis of a guanidine alkaloid Nitensidine D using immobilized ionic liquid, microwaves and formamidinesulfinic acid. J. Chem. Sci. 2014. V. 126. N 6. P. 1869-1874. DOI: 10.1007/s12039-014-0723-8.

Yoo S.-H., Lee J.-S., Park S.Y., Kim Y.-S., Chang P.-S., Lee H.-G. Effects of selective oxidation of chitosan on physical and biological properties. Int. J. Biol. Macromol. 2005. V. 35. P. 27-31. DOI: 10.1016/j.ijbiomac.2004.11.004.

Zhang S., Feng J., Feng J., Jiang Y. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons. Appl. Surface Sci. 2017. V. 396. P. 1220-1225. DOI: 10.1016/j.apsusc.2016.11.116.

Liu J., Pu H., Zhang X., Xiao L., Kan J., Jin C. Effects of ascorbate and hydroxyl radical degradations on the structural, physicochemical, antioxidant and film forming properties of chitosan. Int. J. Biol. Macromol. 2018. V. 114. P. 1086-1093. DOI: 10.10.1016/j.ijbiomac.2018.04.021.

Jawad A.H., Nawi M.A., Mohamed M.H., Wilson L.D. Oxidation of Chitosan in Solution by Photocatalysis and Product Characterization. J. Polym. Environ. 2017. V. 25. N 3. P. 828-835. DOI: 10.1007/s10924-016-0867-3.

Pokrovskaya E.A., Makarov S.V., Amanova A.V., Kudrik E.V. Production of Modified Starch Using System Hydrogen Peroxide – Thiourea Dioxide. Russ J. Appl. Chem. 2019. V. 92. N11. P. 1513-1516. DOI: 10.1134/S1070427219110077.

Hebeish A., El-Rafie M.H., Waly A., Moursi A.Z. Craft copolymerization of vinyl monomers onto modified cot-ton. IX. Hydrogen peroxide – thiourea dioxide redox system induced grafting of 2-methyl-5-vinylpyridine onto oxidized cellulose. J. Appl. Polymer Sci. 1978. V. 22. N 7. P. 1853-1866. DOI: 10.1002/app.1978.070220709.

Molodtsov P.A., Makarova A.S., Makarov S.V., Kuznetsova A.A., Koifman O.I. Reaction of thiourea dioxide and hydrogen peroxide with coumarin. Russ J. Gen. Chem. 2018. V. 88. N 6. P. 1086-1089. DOI: 10.1134/S1070363218060063.

Guo L., Li D., Lennholm H., Zhai H., Ek M. Structural and functional modification of cellulose nanofibrils using graft copolymerization with glycidyl methacrylate by Fe2+ - thiourea dioxide – H2O2 redox system. Cellulose. 2019. V. 26. N 8. P. 4853-4864. DOI: 1007/s10570-019-02411-2.

Parovuori P., Hamunen A., Forssell P., Autio K, Poutanen K. Oxidation of Potato Starch by Hydrogen Per-oxide. Starch. 1995. V. 47. N 1. P. 19-23. DOI: 10.1002/star.19950470106.

Elinov N.P. Bases of biotechnology. SPb: Nauka. 1995. 601 p. (in Russian).

Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., Rhoades J., Roller S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol. 2001. V. 71. N 2-3. 235–244. DOI: 10.1016/ S0168-1605(01)00609-2.

Published
2021-01-01
How to Cite
Naidenko, E. V., Makarov, S. V., Pokrovskaya, E. A., & Nikulin, A. M. (2021). MODIFICATION OF CHITOSAN BY THIOUREA DIOXIDE. ChemChemTech, 64(1), 73-78. https://doi.org/10.6060/ivkkt.20216401.6282
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)