ДЕСТРУКЦИЯ ВИТАМИНА В12 ПРИ ВЗАИМОДЕЙСТВИИ С АКТИВНЫМИ ФОРМАМИ КИСЛОРОДА
Аннотация
Одной из самых привлекательных молекулярных систем в мире химии и медицины является витамин В12, который был первоначально открыт как фактор против дефицитной (пернициозной) анемии. Дефицит этого незаменимого витамина приводит к снижению в крови количества эритроцитов и падению уровня гемоглобина. В статье дается краткий обзор процессов, протекающих с участием витамина B12 и хлорноватистой кислоты, супероксида, синглетного кислорода, пероксида водорода, гидроксильного радикала, пероксинитрита. В условиях гипоксии может происходить нарушение переноса кислорода в электронно-транспортной цепи, следствием чего является восстановление кислорода на убихиноне до супероксида под действием электронов, не достигших цитохромоксидазы; развивается окислительный стресс, в процессе которого образуются кислородсодержащие радикалы, вызывающие необратимые изменения витамина и приводящие к потере биологической активности. В качестве окислителя может также выступать пероксид водорода, образующийся в результате протонирования и последующего диспропорционирования супероксида. Пероксид водорода способен вступать в реакцию Фентона с металлами переменной степени окисления, которая приводит к образованию реакционноспособного гидроксильного радикала. Кроме того, в качестве окислителей могут выступать хлорноватистая кислота, генерируемая ферментом миелопероксидазой в присутствии пероксида водорода и хлорида, а также пероксинитрит – активный окислитель, образующийся при взаимодействии супероксида с оксидом азота(II). Последний в условиях гипоксии продуцируется в больших количествах за счет повышения активности эндотелиальной синтетазы оксида азота(II). Рассмотрены публикации, посвященные влиянию различных окислителей на стабильность витамина В12.
Для цитирования:
Ерина А.А., Бородулин В.Б., Деревеньков И.А., Макаров С.В., Ищенко А.А. Деструкция витамина В12 при взаимодействии с активными формами кислорода. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 7. С. 6-18. DOI: 10.6060/ivkkt.20246707.7043.
Литература
Halczuk K., Kazmierczak-Baranska J., Karwowski B.T., Karmanska A., Cieslak M. Vitamin B12—Multifaceted In Vivo Functions and In Vitro Applications. Nutrients. 2023. V. 15. N 12. P. 2734. DOI: 10.3390/nu15122734.
Martens J. H., Barg H., Warren M. A., Jahn D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 2002. V. 58. N 3. С. 275. DOI: 10.1007/s00253-001-0902-7.
Kräutler B. Biochemistry of B12-cofactors in human. Subcell. Biochem. 2012. V. 56. P. 323-346. DOI: 10.1007/978-94-007-2199-9_17.
Stich T.A., Brooks A.J., Buan N.R., Brunold T.C. Spectroscopic and computational studies of Co3+-corrinoids: Spectral and electronic properties of the B12 cofactors and biologically relevant precursors. J. Am. Chem. Soc. 2003. V. 125. N 19. P. 5897-5914. DOI: 10.1021/ja029328d.
Khapaliuk A.V. Vitamin B12 deficiency, aging and cognitive impairment. Lechebnoye delo. 2023. N 2 (85). P. 20-25 (in Russian).
Watanabe F., Yabuta Y., Bito T., Teng F. Vitamin B12-containing plant food sources for vegetarians. Nutrients. 2014. V. 6. N 5. P. 1861-1873. DOI: 10.3390/nu6051861.
Green R., Allen L.H., Bjørke-Monsen A.L., Brito A., Guéant J.L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B., Ueland P.M., Yajnik C. Vitamin B12 deficiency. Nat. Rev. Dis. Primers. 2017. V. 3. N 1. P. 1-19. DOI: 10.1038/nrdp.2017.40.
Stabler S.P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med. 2013. V. 368. P. 149-160. DOI: 10.1056/ NEJMcp1113996.
Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Am. J. Hematol. 2017. V. 129. P. 2603-2611. DOI: 10.1182/blood-2016-10-569186.
Randaccio L., Geremia S., Demitri N., Wuerges J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Mol. 2010. V. 15. N 5. P. 3228-3259. DOI: 10.3390/molecules15053228.
Pogonin A.E., Otlyotov A.A., Tverdova N.V., Koifman O.I., Girichev G.V., Ischenko A.A., Rumyantseva V.D. Molecular structure of cobalt(II) etioporphyrin-II determined by combined gas-phase electron diffraction/mass-spectrometry and quantum chemical calculations: Searching a ruffling and saddling effects. J. Mol. Struct. 2020. V. 1216. P. 128319-8. DOI: 10.1016/ j.molstruc.2020.128319.
Sliznev V.V., Pogonin A.E., Ischenko A.A., Girichev G.V. Vibrational Spectra of Cobalt(II), Nickel(II), Cop-per(II), Zinc(II) Eioporphyrns-II, MN4C32H36. Macroheterocycles. 2014. V. 7. N 1. P. 60-72 (in Russian). DOI: 10.6060/mhc 131058g.
Dereven’kov I.A., Salnikov D.S., Silaghi-Dumitrescu R., Makarov S.V., Koifman S.I. Redox chemistry of cobalamin and its derivatives. Coord. Chem. Rev. 2016. V. 309. P. 68-83. DOI: 10.1016/j.ccr.2015.11.001.
Orlov Y.P., Sviridov S.V., Kakulya Е.N. Pathophysiological aspects of oxygen, hypoxia and free radical oxidation in critical conditions. Klinich. Pitanie Metabolizm. 2021. V. 2. N 2. P. 66-79 (in Russian). DOI: 10.17816/clinutr88951.
Martinovich G.G. Reactive oxygen species in the regulation of functions and properties of cells: phenomena and mecha-nisms. Minsk: BGU. 2021. 240 p. (in Russian).
Pozhilova Е.V., Novikov V.Е., Levchenkova О.S. Reactive Oxygen Species in Cell Physiology and Pathology. Vestn. Smol. Gos. Med. Akad. 2015. V. 14. N 2. P. 13-22 (in Russian).
Koblyakov V.А. Hypoxic state and glycolysis as a possible anticancer therapeutic target. Usp. Molekul. Onkologii. 2014. N 2. P. 44-49 (in Russian). DOI: 10.17650/2313-805X. 2014.1.2.44-49.
Orlov Y.P. Intravascular Hemolysis of Red Blood Cells in the Development of Organ Dysfunctions in Critical Conditions. Obshch. Reanimatolog. 2008. V. 4. N 2. P. 88-93 (in Russian). DOI: 10.15360/1813-9779-2008-2-88.
Tseylikman В.E., Lukin А.А. On the effect of oxidative stress on the human body. MNIZH. 2022. N 3-1 (117). P. 206-211 (in Russian). DOI: 10.23670/IRJ.2022.117.3.037.
Chatgilialoglu C., Ferreri C., Krokidis M.G., Masi A., Terzidis M.A. On the relevance of hydroxyl radical to purine DNA damage. Free Rad. Res. 2021. V. 55. N 4. P. 384-404. DOI: 10.1080/10715762.2021.1876855.
Davies M.J. Myeloperoxidase-derived oxidation: mecha-nisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 2010. V. 48. N 1. P.8-19. DOI: 10.3164/jcbn.11-006FR.
Mezentsev Y.А., Osipova О.А. Review of current information impact of oxidation stress on premature aging. Sovrem. Probl. Zdravookhran. Med. Statistiki.. 2022. V. 5. P. 249-269 (in Russian). DOI: 10.24412/2312-2935-2022-5-249-269.
Ahmad I., Qadeer K., Hafeez A., Zahid S., Sheraz M.A. Effect of ascorbic acid on the photolysis of cyanocobalamin and aquocobalamin/hydroxocobalamin in aqueous solution: A kinetic study. J. Photochem. Photobiol. A. 2017. V. 332. P. 92-100. DOI: 10.1016/j.jphotochem.2016.08.004.
Suarez-Moreira E., Yun J., Birch C.S., Williams J.H., McCaddon A., Brasch N.E. Vitamin B12 and redox homeostasis: cob (II) alamin reacts with superoxide at rates approaching superoxide dismutase (SOD). J. Am. Chem. Soc. 2009. V. 131. N 42. P. 15078-15079. DOI: 10.1021/ ja904670x.
Chernekhovskaya N. E., Povalyaev A.V. The role of nitric oxide in respiratory pathology. Endoskopiya. 2012. N 3. P. 28-36 (in Russian).
Kudaeva I.V., Popkova О.V. Nitric oxide as a possible target of pathogenetic therapy at the neurointoxication by in-dustrial factors. Acta Biomed. Sci. 2012. N 5-2 (87). P. 34-38 (in Russian).
Panasenko O. M., Gorudko I. V., Sokolov A. V. Hypochlorous acid as a precursor of free radicals in living systems. Usp. Biolog. Khim. 2013. V. 53. P. 195-244 (in Russian).
Abu-Soud H.M., Maitra D., Byun J., Souza C.E.A., Banerjee J., Saed G.M., Diamond M.P., Andreana P.R., Pennathur S. The reaction of HOCl and cyanocobalamin: Corrin destruction and the liberation of cyanogen chloride. Free Rad. Biol. Med. 2012. V. 52. N 3. P. 616-625. DOI: 10.1016/j.freeradbiomed.2011.10.496.
Okamoto N., Bito T., Hiura N., Yamamoto A., Iida M., Baba Y., Fujita T., Ishihara A., Yabuta Y., Watanabe F. Food additives (hypochlorous acid water, sodium metabisulfite, and sodium sulfite) strongly affect the chemical and bio-logical properties of vitamin B12 in aqueous solution. ACS Omega. 2020. V. 5. N 11. P. 6207-6214. DOI: 10.1021/ acsomega.0c00425.
Lison D., De Boeck M., Verougstraete V., Kirsch-Volders M. Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup. Environ. Med. 2001. V. 58. N 10. P. 619-625. DOI: 10.1136/oem.58.10.619.
Dereven’kov I.A., Osokin V.S., Hannibal L., Makarov S.V., Khodov I.A., Koifman O.I. Mechanism of cyanoco-balamin chlorination by hypochlorous acid. J. Biol. Inorg. Chem. 2021. V. 26. N 4. P. 427-434. DOI: 10.1007/s00775-021-01869-5.
Lehene M., Brânzanic A.M.V., Silaghi-Dumitrescu R. The adducts of cyano-and aquacobalamin with hypochlorite. J. Biol. Inorg. Chem. 2023. P. 1-7. DOI: 10.1007/s00775-023-02015-z.
Dereven’kov I.A., Makarov S.V., Shpagilev N.I., Salnikov D.S., Koifman O.I. Studies on reaction of glutathi-onylcobalamin with hypochlorite. Evidence of protective action of glutathionyl-ligand against corrin modification by hypochlorite. Biometals. 2017. V. 30. P. 757–764. DOI: 10.1007/s10534-017-0044-8.
Dereven'kov I.A, Shpagilev N.I, Valkai L., Salnikov D.S, Horváth A.K, Makarov S.V. Reactions of aquacobalamin and cob(II)alamin with chlorite and chlorine dioxide. J. Biol. Inorg. Chem. 2016. V. 22. N 11. P. 453-459. DOI: 10.1007/s00775-016-1417-0.
Dereven’kov I.А., Osokin V.S. Interaction of Cob(III)alamins with Hypothiocyanite. Evidence for the Formation of Hypothiocyanitocobalamin. Macroheterocycles. 2021. V. 14. N 2. P. 153-156 (in Russian). DOI: 10.6060/mhc201128d.
Chesnokova N.P., Ponukalina Е.V., Bizenkova М.N. Molecular-Cellural Mechanisms of the Induction of Free Radical Oxidation in the Conditions of Pathology. Sovr. Probl. Nauki Obrazov. 2006. N 6. P. 21-26 (in Russian).
Tkachuk V.А., Tyurin-Kuzmin P.А., Belousov V.V., Vorotnikov А.V. Hydrogen Peroxide as a New Second Messenger. Biol. Membrany. V. 29. N 1-2. P. 21-21 (in Russian).
Chan W., Almasieh M., Catrinescu M.M., Levin L.A. Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B12–deprivation optic neuropathy. Am. J. Pathol. 2018. V. 188. N 1. P. 160-172. DOI: 10.1016/j.ajpath.2017.08.032.
Chang S., Tat J., China S. P., Kalyanaraman H., Zhuang S., Chan A., Lai C., Radic Z., Abdel-Rahman E. A., Casteel D.E., Pilz R.B., Ali S.S., Boss G.R. Co-binamide is a strong and versatile antioxidant that overcomes oxidative stress in cells, flies, and diabetic mice. PNAS Nexus 2022. V. 1. N 4. P. 1-14. DOI: 10.1093/pnasnexus/pgac191.
Kovalyova О.N., Ashcheulova Т.V., Gerasimchuk N.N., Safargalina-Kornilova N.А. Role of Oxidative stress in the formation and progression of hypertensive diseas. Aktual. Probl. Meditsiny. 2015. V. 29. N 4 (201). P. 5-10 (in Russian).
Abalenikhina Y.V., Kosmachevskaya О.V., Topunov А.F. Peroxynitrite: toxic agent and signaling molecule (Review). Prikl. Biokhim Mikrobiol. 2020. V. 56. N 6. P. 523-535 (in Russian).
Ríos N., Prolo C., Álvarez M.N., Piacenza L., Radi R. Peroxynitrite Formation and Detection in Living Cells. Nitric Oxide. Academic Press. 2017. P. 271-288. DOI: 10.1016/ B978-0-12-804273-1.00021-1.
Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013. V. 288. N 37. P. 26464-26472. DOI: 10.1074/ jbc.R113.472936.
Hrabarova E., Juranek I., Soltes L. Prooxidative effect of peroxynitrite regarding biological systems: a special focus on high-molarmass hyaluronan degradation. Gen. Physiol. Biophys. 2011. V. 30. N 3. P. 223. DOI: 10.4149/gpb_ 2011_03_223.
Van Kapel J., Spijkers L.J.M., Lindemans J., Abels J. Improved distribution analysis of cobalamins and cobalamin analogues in human plasma in which the use of thiol-blocking agents is a prerequisite. Clin. Chim. Acta. 1983. V. 131. N 3. P. 211-224. DOI: 10.1016/0009-8981(83)90090-6.
Mukherjee R., Brasch N.E. Kinetic studies on the reaction between cob (I) alamin and peroxynitrite: rapid oxidation of cob(I)alamin to cob(II)alamin by peroxynitrous acid. Chem. Eur. J. 2011. V. 17. N 42. P. 11723-11727. DOI: 10.1002/chem.201102267.
Augusto O., Bonini M.G., Amanso A.M., Linares E., Santos C.C., De Menezes S.L. Nitrogen dioxide and car-bonate radical anion: two emerging radicals in biology. Free Radic. Biol. Med. 2002. V. 32. N 9. P. 841-859. DOI: 10.1016/ S0891-5849(02)00786-4.
Mukherjee R., Brasch N.E. Mechanistic studies on the reaction between cob (II) alamin and peroxynitrite: evidence for a dual role for cob (II) alamin as a scavenger of peroxy-nitrous acid and nitrogen dioxide. Chem. Eur. J. 2011. V. 17. N 42. P. 11805-11812. DOI: 10.1002/chem.201100223.
Lehene M., Plesa D., Ionescu-Zinca S., Iancu S.D., Leopold N., Makarov S.V., Branzanic A.M.V., Silaghi-Dumitrescu R. Adduct of aquacobalamin with hydrogen peroxide. Inorg. Chem. 2021. V. 60. N 17. P. 12681-12684. DOI: 10.1021/acs.inorgchem.1c01483.
Salnikov D.S., Makarov S.V., Koifman O.I. The radical versus ionic mechanisms of reduced cobalamin inactivation by tert-butyl hydroperoxide and hydrogen peroxide in aqueous solution. New J. Chem. 2021. V. 45. N 2. P. 535-543. DOI: 10.1039/D0NJ04231E.
Nazhat N.B., Golding B.T., Johnson G.A., Jones P. Destruction of vitamin B12 by reaction with ascorbate: the role of hydrogen peroxide and the oxidation state of cobalt. J. In-org. Biochem. 1989. V. 36. N 2. P. 75-81. DOI: 10.1016/ 0162-0134(89)80014-5.
Ahmad I., Qadeer K., Zahid S., Sheraz M.A., Ismail T., Hussain W., Ansari I.A. Effect of ascorbic acid on the degradation of cyanocobalamin and hydroxocobalamin in aqueous solution: a kinetic study. AAPS PharmSciTech. 2014. V. 15. P. 1324-1333. DOI: 10.1208/s12249-014-0160-5.
Johns P.W., Das A., Kuil E.M., Jacobs W.A., Schimpf K.J., Schmitz D.J. Cocoa polyphenols accelerate vitamin B 12 degradation in heated chocolate milk. Int. J. Food Sci. Technol. 2015. V. 50. N 2. P. 421-430. DOI: 10.1111/ ijfs.12632.
Makarov S.V., Makarova A.S., Dereven’kov I.A. Chemistry of sodium hydroxymethanesulfinate and thiourea oxides: new data. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 7. P. 52-58. DOI: 10.6060/ivkkt.20236607. 6856j.
Makarov S.V., Kiseleva A.G., Pokrovskaya E.A. Interaction of thiourea dioxide with N-butylamine. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 52-58. DOI: 10.6060/ivkkt.20236605.6794.
Dereven’kov I.A., Makarov S.V., Makarova A.S. Mechanism of aquacobalamin decomposition in aqueous aerobic solutions containing glucose oxidase and glucose. React. Kinet. Mech. Catal. 2021. V. 133. N 1. P. 73-84. DOI: 10.1007/s11144-021-01992-z.
Lehene M., Zăgrean-Tuza C., Niculina Hădade N., Aghion A., Şeptelean R., Iancu S.D., Brânzanic A.M.V., Si-laghi-Dumitrescu R. A complex of cobalamin with an organic peroxide. New J. Chem. 2023. V. 47. P. 17178-18185. DOI: 10.1039/D3NJ03307D.
Blackburn R., Cox D.L., Phillips G.O. Effects of gamma radiation on vitamin B12 systems. J. Chem. Soc. Farad. Trans. I. 1972. V. 68. P. 1687-1696. DOI: 10.1039/F1972 6801687.
Vladimirov Y.А. Free Radical in Biological Systems. Soros. Obrazovat. Zhurn. 2000. V. 6. N 12. P. 13-19 (in Russian).
Dontsov V.I., Krut’ko V.N., Mrikaev B.M., Ukhanov S.V. Aktivnye formy kisloroda kak sistema: znachenie v fiziologii, patologii i estestvennom starenii (System of active forms of oxygen: the role in physiology, pathology and aging). Tr. Inst. System. Analiza RAN. 2006. V. 19. P. 50-69 (in Russian).
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen P.H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020. V. 395. N 10229. P. 1054-1062. DOI: 10.1016/S0140-6736(20)30566-3.
Erina А.А. Reactive Oxygen Species and their influence on the spectral characteristics of the cyanocobalamine. Coll. of materials. VII International Scientific and Practical Confer-ence. December 07, 2022 St. Petersburg: Pechatnyy tsekh. 2022. P. 168-172.
Oliveros E., Besançon F., Boneva M., Kräutler B., Braun A.M. Singlet oxygen (1Δg) sensitization and quenching by vitamin B12 derivatives. J. Photochem. Photobiol. B: Biolo-gy. 1995. V. 29. N 1. P. 37-44. DOI: 10.1016/1011-1344(95)90249-X.
Kräutler B., Stepánek R. The Vitamin-B12-derived Co (III)-Complex ‘Pyrocobester’as Photosensitizer and as Substrate in Reactions Involving ‘Singlet Oxygen’. Helv. Chim. Acta. 1983. V. 66. N 5. P. 1493-1512. DOI: 10.1002/hlca.1983 0660517.
Misra U.K., Kalita J., Singh S.K., Rahi S.K. Oxidative Stress Markers in Vitamin B12 Deficiency. Mol. Neurobiol. 2017. V. 54. P. 1278–1284. DOI: 10.1007/s12035-016-9736-2.
Demirtas M.S., Erdal H. Evaluation of Thiol Disulfide Balance in Adolescents with Vitamin B12 Deficiency. Ital. J. Pediatr. 2023. V. 49. N 1. P. 1-6. DOI: 10.1186/s13052-022-01396-2.
Collin S.M., Metcalfe C., Refsum H., Lewis S.J., Zuccolo L., Smith G.D., Chen L., Harris R., Davis M., Marsden G. Circulating Folate, Vitamin B12, Homocysteine, Vitamin B12 Transport Proteins, and Risk of Prostate Cancer: A Case-Control Study, Systematic Review, and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2010. V. 19. P. 1632–1642. DOI: 10.1158/1055-9965.EPI-10-0180.
Fanidi A., Carreras-Torres R., Larose T.L., Yuan J.M., Stevens V.L., Weinstein, S.J., Albanes D., Prentice R., Pettinger M., Cai Q. Is High Vitamin B12 Status a Cause of Lung Cancer? Int. J. Cancer. 2019. V. 145. P. 1499–1503. DOI: 10.1002/ijc.32033.
Ermens A.A.M., Vlasveld, L.T., Lindemans J. Significance of Elevated Cobalamin (Vitamin B12) Levels in Blood. Clin. Biochem. 2003. V. 36. P. 585–590. DOI: 10.1016/ j.clinbiochem.2003.08.004.
Lin C.Y., Kuo C.S., Lu C.L., Wu M.Y., Huang R.F.S. Elevated Serum Vitamin B12 Levels in Association with Tu-mor Markers as the Prognostic Factors Predictive for Poor Survival in Patients with Hepatocellular Carcinoma. Nutr. Cancer. 2010. V. 62. P. 190–197. DOI: 10.1016/j.clinbiochem. 2003.08.004.
World Cancer Research Fund; American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Recommendations and Public Health and Policy Implications; World Cancer Research Fund: London, UK; American Institute for Cancer Research: Washington, DC, USA. 2018. https://www.wcrf.org.