COORDINATION INTERACTION OF METALLOPORPHYRINS WITH NITROGEN-CONTAINING LIGANDS AS A METHOD FOR REGULATING THE FORMATION OF METAL ISOPORPHYRINATES

  • Maria E. Matis Ivanovo State University of Chemistry and Technology
  • Anastasia A. Shmyrova Ivanovo State University of Chemistry and Technology
  • Ulyana V. Malykh Ivanovo State University of Chemistry and Technology
  • Irina M. Podshivalova Ivanovo State University of Chemistry and Technology
  • Tatyana A. Ageeva Ivanovo State University of Chemistry and Technology
Keywords: metalloporphyrins, zinc isoporphyrinate, benzoyl peroxide, extracoordination, nitrogen-containing ligand, kinetics

Abstract

The presented work is devoted to the study the possibility of using the nitrogen-containing ligands (pyridine, imidazole, 2-methylimidazole) coordination by zinc meso-tetraphenylporphyrinate as a method for regulating the formation of corresponding isoporphyrinates under the action of benzoyl peroxide in chloroform. The research was carried out in two stages. At the first stage, extra complexes of these ligands with zinc meso-tetraphenylporphyrinate in solution were obtained. The extracoordination of 2-methylimidazole with zinc porphyrinate in chloroform was studied for the first time. The extra complex stability constant and the thermodynamic parameters of the process were presented in this article. The stability range of zinc meso-tetraphenylporphyrinate extra complexes in chloroform based on the literature data and the experimental results was established: ZnTPP(Im) > ZnTPP(2-MeIm) > ZnTPP(Py). Studies of the interaction of the obtained extracomplexes with an excess of benzoyl peroxide in chloroform at the second stage of the work showed that the formation of the corresponding isoporphyrinates is possible only with ZnTPP(Py), and this process proceeds slower than with ZnTPP. During the interaction, characteristic changes in the electronic absorption spectra were observed: a decrease in the absorption bands in the visible region and an increase in the absorption bands in the near-IR region of the spectrum. It is noted that during the formation of ZnTPP isoporphyrinate(Py), a bathochromic shift of the absorption bands in the electronic absorption spectra occurs by 1-4 nm compared to ZnTPP isoporphyrinate. It was found that the more stable metalloporphyrin extra complex, the lower the probability of the formation of metal isoporphyrinate. It is shown that the introduction of coordinating additives into the "metalloporphyrin-benzoyl peroxide" system makes it possible to regulate the direction and rate of the formation of metal isoporphyrinates.

References

Bhuyan J. Metalloisoporphyrins: from synthesis to applications. Dalton Trans. 2015. V. 44. N 36. P. 15742-15756. DOI:10.1039/c5dt01544h.

Bhuyan J. Nucleophilic ringopening of iron(III)-hydroxyisoporphyrin. Dalton Trans. 2016. V. 45. N. 6. Р. 2694-2699. DOI:10.1039/c5dt03905c.

Garcia-Bosch I., Sharma S.K., Karlin K.D. A Selective Stepwise Heme Oxygenase Model System: An Iron(IV)-Oxo Porphyrin π-Cation Radical Leads to a Verdoheme-Type Compound via an Isoporphyrin Intermediate. J. Amer. Chem. Soc. 2013. V. 135. N. 44. Р. 16248-16251. DOI:10.1021/ ja405739m.

Ehudin M.A., Senft L., Franke A., Ivanović-Burmazović I., Karlin K.D. Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome c Oxidase. J. Amer. Chem. Soc. 2019. V. 141. N. 27. P. 10632-10643. DOI:10.1021/jacs.9b01791.

Mwakwari S.C., Wang H., Jensen T.J.M. Syntheses, properties and cellular studies of metalloisoporphyrins. J. Porphyrins Phthalocyanines. 2011. V. 15. P. 918-929. DOI: 10.1142/S108842461100380X.

Boudiaf M., Liang Yi., Lamare R, Weiss J., Ibrahim H., Goldmann M., Bentouhami E., Badets V., Choua S., Le Breton N., Bonnefont A., Ruhlmann L. Stable isoporphyrin copolymer: Electrochemical mechanism and behavior and photovoltaic properties. Electrochimica Ac-ta. 2019.

V. 309. P. 432-449. DOI: 10.1016/j.electacta.2019.04.050.

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G., Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck Th., von Borczyskowski Ch., Dietrich l, Zahn R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocyclic compounds - a key building block in new functional materials and molecular devices. Macroheterocycles. 2020. V. 13 (4). P. 311-467. DOI: 10.6060/mhc200814k.

Mwakwari C., Fronczek F.R., Smith K.M. b-Bilene to a,c-biladiene transformation during syntheses of isopor-phyrins and porphyrins. Chem. Comm. 2007. V. 22. P. 2258-2260. DOI:10.1039/b705182d

Takeda Y., Takahara Sh., Kobayashi Y. Isoporphyrins. Near-Infrared dyes with noticeable photochemical and redox properties. Chemistry letters. 1990. P. 2103-2106.

Glazkova М.Е., Аgeeva Т.А., Nikolaeva О.I., Rumyantseva Yu.V., Кoifman О.I. Interaction of zinc complex of meso-tetraphenylporphyrin with organic peroxides in solution. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2011. V. 54. N 3. P. 104-108 (in Russian).

Glazkova M.E., Ageeva T.A., Alexandriyskiy V.V., Koifman O.I. Formation of Initiating Systems on the Ba-sis of Cobalt Porphyrins and Benzoyl Peroxide in Chloroform and Methyl Methacrylate. Macroheterocycles. 2011. V. 4. N. 1. P. 22-25.

Nikolaeva O.I., Kandagalova E.R., Ageeva T.A. Synthesis and investigation of copolymers of glycidylmethac-rylate and copper complex methyl pheophorbide “a” in solution. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 11. P. 41-48. DOI: 10.6060/ivkkt.20206311.6308.

Glazkova M.E., Petrova M.V., Rodina Yu.S., Rodina S.S., Ageeva T.A. Spectral properties of zinc and cobalt meso-tetraphenylporphyrins in polymer films. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2020. V. 63. N 10. P. 110-116 (in Russian). DOI: 10.6060/ivkkt.20206310.6301.

Lebedeva N.Sh., V'yugin A.I., Pavlycheva N.A. The thermodynamic parameters parameters of complex for-mation between zinc(II)tetraphenylporphyrin and amines. Zhurn. Fiz. Khim. 2004. V. 78. N 1. P. 1-4 (in Russian).

Toroptseva A.M., Belogorodskaya K.V., Bondarenko V.M. Laboratornyi praktikum po khimii i tekhnologii vysokomoleculyarnykh soedinenii [Practicum on Chemistry and Technology]. Leningrad: Khimiya. 1972. 416 p. (in Russian).

Koroleva T.A., Koifman O.I., Berezin B.D. Thermodynamics and spectroscopy of the extracoordination of im-idazole and ethanol on zinc porphyrins. Zhurn. Koord. Khim. 1981. V. 7. N 11. P. 1642-1647 (in Russian).

Ageeva T.A., Koifman O.I. Metalloporphyrins: from extracomplexes with small molecules to supramolecular systems. // In: Advances in Porphyrin Chemistry. St. Petersburg: Research Institute of Chemistry of St. Petersburg State University. 2004. V. 4. Р. 218-244 (in Russian).

Andreev V.P., Sobolev P.S., Tafeenko V.A. Coordination of zinc tetraphenylporphyrin with pyridine deriva-tives in chloroform solution and in the solid phase. Zhurn. Obsh. Khim. 2017. V. 87. P. 1572-1579 (in Russian). DOI: 10.1134/ S1070363217070210.

Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Supramolecular porphyrin com-plexes. Usp. Khim.2005. V. 74. N. 8. P. 765-780 (in Russian). DOI: 10.1070/ RC2005v074n08ABEH001056.

Zaitseva S.V., Zdanovich S.A., Koifman O.I. Structure and coordination properties of sterically strained meso-alkylsubstituted Zn porphyrin. Russ. J. Inorg. Chem. 2008. V. 53. P. 901-905. DOI: 10.1134/S0036023608060156. (in Russian).

Singh N.G., Borah K.D., Majumder S., Bhuyan J. Ethanol coordinated zinc trimethoxyphenyl porphyrin: Struc-ture, theoretical studies and formation of isoporphyrin. J. Molec.Struct. 2019. V. 127116. DOI:10.1016/j.molstruc.2019.127116.

Bhuyan J., Sarkar S. Oxidative Degradation of Zinc Porphyrin in Comparison with Its Iron Analogue. Chem. - A Europ. J. 2010. V. 16(35). P. 10649-10652. DOI:10.1002/ chem.201001073.

Zaitseva S.V., Zdanovitch S.A., Koifman O.I. Coordination properties of zinc 5,15-di(ortho-aminophenyl)octaalkylporphyrin in reactions with mono- an dibasic nitrogen bases. Russ. J. Inorg. Chem. 2010. V. 55. P. 1574-1580 (in Russian). DOI: 10.1134/S0036023610100141.

Andreev V.P., Sobolev P.S., Zaitsev D.O. et al. Coordination of secondary and tertiary amines to zinc tetra-phenylporphyrin. Zhurn. Obsh. Khim. 2014. V. 84. P. 1979-1988 (in Russian). DOI: 10.1134/S107036321410020X.

Andreev V.P., Sobolev P.S., Zaitsev D.O. et al. Effect of the Solvent on the Coordination of Pyridine Deriva-tives with Zn Tetraphenylporphine. Zhurn. Obsh. Khim. 2018. V. 88.

P. 2108-2113 (in Russian). DOI: 10.1134/S1070363218100134.

Published
2021-09-22
How to Cite
Matis, M. E., Shmyrova, A. A., Malykh, U. V., Podshivalova, I. M., & Ageeva, T. A. (2021). COORDINATION INTERACTION OF METALLOPORPHYRINS WITH NITROGEN-CONTAINING LIGANDS AS A METHOD FOR REGULATING THE FORMATION OF METAL ISOPORPHYRINATES. ChemChemTech, 64(10), 132-138. https://doi.org/10.6060/ivkkt.20216410.6489
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)