SYNTHESIS OF POLYACRYLAMIDE HYDROGELS WITH PORPHYRIN FRAGMENTS IN THE SIDE CHAIN IN THE PRESENCE OF IMIDAZOLIUM IONIC LIQUIDS

  • Nadezhda L. Pechnikova Ivanovo State University of Chemistry and Technology
  • Alexander S. Smirnov Ivanovo State University of Chemistry and Technology
  • Alexey V. Lyubimtsev Ivanovo State University of Chemistry and Technology
  • Victor V. Aleksandriiskiy Ivanovo State University of Chemistry and Technology
  • Tatyana A. Ageeva Ivanovo State University of Chemistry and Technology
Keywords: polyacrylamide hydrogels, porphyrin polymers, porphyrin monomers, ionic liquids, sorption properties

Abstract

The acrylamide hydrogels containing the porphyrin fragments have been obtained by radical polymerization in a solution. The synthesis has been carried out in the presence of imidazolium ionic liquids with length of the alkyl substituent in the imidazolium ring from C4 to C8. The influence of the used ionic liquids on the structure and some properties of the resulting porphyrin-containing acrylamide hydrogels has been established. The addition of an ionic liquid with a different length of the alkyl substituent into the reaction system can influence the structural changes that occur with the porphyrin comonomer during copolymerization with acrylamide. The formation of bacteriochlorin-like structures is inhibited in the presence of an ionic liquid in the reaction medium. This effect is most noticeable when using an imidazolium ionic liquid with a C8 alkyl substituent length. Hydrogels synthesized in the presence of ionic liquids have lower specific surface area compared to ones obtained without the use of ionic liquids. The lowest specific surface area values were shown by hydrogels synthesized using 1-octyl-3-methylimidazolium bromide. It was also found that the introduction of ionic liquid into the reaction mixture can contribute to both increase and decrease in the numerical values of the sorption characteristics of the resulting hydrogels, depending on the length of the alkyl substituent in the imidazolium ring and a porphyrin : acrylamide ratio. Hydrogels synthesized using 1-hexyl-3-methylimidazolium bromide and 1-octyl-3-methylimidazolium bromide at an initial porphyrin : acrylamide ratio of 1:20 have the highest degree of swelling. Varying the ratio of the initial monomers and the structure of the imidazolium ionic liquid during the copolymerization process allows to control the physicochemical characteristics of the resulting porphyrin-containing hydrogels, which can be useful for solving various applied problems.

For citation:

Pechnikova N.L., Smirnov A.S., Lyubimtsev A.V., Aleksandriiskiy V.V., Ageeva T.A. Synthesis of polyacrylamide hydrogels with porphyrin fragments in the side chain in the presence of imidazolium ionic liquids. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 6. P. 73-79. DOI: 10.6060/ivkkt.20246706.7053.

Author Biographies

Nadezhda L. Pechnikova, Ivanovo State University of Chemistry and Technology

Research Institute of Macroheterocyclic compounds, Department of Chemistry and Technology of Higher Molecular Compounds, Ivanovo State University of Chemistry and Technology, PhD, researcher

Alexander S. Smirnov, Ivanovo State University of Chemistry and Technology

Department of Chemistry and Technology of Higher Molecular Compounds, student

Alexey V. Lyubimtsev, Ivanovo State University of Chemistry and Technology

Department of Chemistry and Technology of Higher Molecular Compounds, Doctor of Chemical Sciences, professor

Victor V. Aleksandriiskiy, Ivanovo State University of Chemistry and Technology

Research Institute of Macroheterocyclic compounds, Department of Chemistry and Technology of Higher Molecular Compounds, PhD, docent

References

Ullah F., Othman M.B.H., Javed F., Ahmad Z., Akil H.M. Classification, processing and application of hydrogels: a review. Mater. Sci. Eng.: C. 2015. V. 57. P. 414-433. DOI: 10.1016/j.msec.2015.07.053.

Kaith B.S., Singh A., Sharma A.K., Sud D. Hydrogels: synthesis, classification, properties and potential applications – a brief review. J. Polym. Environ. 2021. V. 29. N 12. P. 3827–3841. DOI: 10.1007/s10924-021-02184-5.

Ahmed E.M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 2015. V. 6. N 2. P. 105-121. DOI: 10.1016/j.jare.2013.07.006.

Pirsa S., Khodaei S.M., Sani I.K., Ghasemi Y., Jawhar Z.H., Eghbaljoo H. Hydrogels and biohydrogels: investigation of origin of production, production methods, and applica-tion. Polym. Bull. 2023. V. 80. N 10. P. 10593-10632. DOI: 10.1007/s00289-022-04580-w.

Kussainova G.K., Zhunusbekova N.M., Iskakova T.K., Chinibaeva N.S., Khudaibergenov N.S. Obtaining and modification of interpenetrating networks based on natural polymers and acrylic acid derivatives. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 83-90 (in Russian). DOI: 10.6060/ivkkt.20226503.6488.

Maslova N.V., Kochetova Z.Y., Sukhanov P.T., Zmeev A.V. Investigation of the kinetics of hydrogel swelling based on acrylamide copolymers and potassium (sodium) acrylate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 27-34 (in Russian). DOI: 10.6060/ivkkt.20226503.6498.

Zhou J., Zhang X.Y., Su Z.Q. Rational design of biomole-cules/polymer hybrids by reversible deactivation radical polymerization (RDRP) for biomedical applications. Chin. J. Polym. Sci. 2021. V. 39. N 9. P. 1093-1109. DOI: 10.1007/ s10118-021-2543-x

Croisfelt F.M., Tundisi L.L., Ataide J.A., Silveira E., Tambourgi E.B., Jozala A.F., Souto E.M.B., Mazzola P.G. Modifiedrelease topical hydrogels: a tenyear review. J. Ma-ter. Sci. 2019. V. 54. N 16. P. 10963-10983. DOI: 10.1007/ s10853-019-03557-x.

Saidi M., Dabbaghi A., Rahmani S. Swelling and drug delivery kinetics of click‑synthesized hydrogels based on various combinations of PEG and star‑shaped PCL: influence of network parameters on swelling and release behavior. Polym. Bull. 2020. V. 77. N 8. P. 3989-4010. DOI: 10.1007/s00289-019-02948-z.

Mengyuan H., Changlin W., Tong X., Ping D., Xiaojun Y., Huaying S., Congying L., Peng G., Zhufeng C. Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polym. Bull. 2023. V. 80. N 7. P. 7101-7144. DOI: 10.1007/s00289-022-04412-x.

Nguyen T.T., Bao N.S., Van G. Advances in hydrogel‑based drug delivery systems for parkinson's disease. Neuro-chem. Res. 2022. V. 47. N 8. P. 2129-2141. DOI: 10.1007/s11064-022-03617-w.

Kim J., Conway A., Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials. 2008. V. 29. N 14. P. 2259-2269. DOI: 10.1016/j.biomaterials.2008.01.030.

Xu J., Li X., Sun F. In vitro and in vivo evaluation of keto-tifen fumarate-loaded silicone hydrogel contact lenses for ocu-lar drug delivery. Drug Deliv. 2011. V. 18. N 2. P. 150-158. DOI: 10.3109/10717544.2010.522612.

Liu Y.Y., Fan X.D., Wei B.R., Si Q.F., Chen W.X., Sun L. pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug release. Int. J. Pharm. 2006. V. 308. N 1–2. P. 205-209. DOI: 10.1016/j.ijpharm. 2005.10.013.

Chen T., Chen Y., Rehman H.U., Chen Z., Yang Z., Wang M., Li H., Liu H. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. In-terfaces. 2018. V. 10. N 39. P. 33523-33531. DOI: 10.1021/ acsami.8b10064.

Qu J., Zhao X., Liang Y., Zhang T., Ma P. X., Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018. V. 183. P. 185-199. DOI: 10.1016/j.biomaterials.2018.08.044.

MohanKumar B.S., Priyanka G., Rajalakshmi S., Sankar R., Sabreen T., Ravindran J. Hydrogels: potential aid in tissue engineering – a review. Polym. Bull. 2022. V. 79. N 9. P. 7009-7039. DOI: 10.1007/s00289-021-03864-x.

Park K.M., Park K.D. In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue. Eng. Regen. Med. 2018. V. 15. N 5. P. 547-557. DOI: 10.1007/ s13770-018-0155-5.

Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003. V. 24. N 24. P. 4337-4351. DOI: 10.1016/S0142-9612(03)00340-5.

Torres-Rendon J.G., Femmer T., De Laporte L., Tigges T., Rahimi K., Gremse F., Zafarnia S., Lederle W., Ifuku S., Wessling M., Hardy J.G., Walther A. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 2015. V. 27. N 19. P. 2989-2995. DOI: 10.1002/adma.201405873.

Ghosal A., Kaushik A. Intelligent Hydrogels in Diagnostics and Therapeutics. Boca Raton, FL.: CRC Press. 2020. 168 p.

Liang D., Zhou G., Hu Y., Zhao C., Chen C. Metal cation-ligand interaction modulated mononetwork ionic conductive hydrogel for wearable strain sensor. J. Mater. Sci. 2021. V. 56. N 26. P. 14531-14541. DOI: 10.1007/s10853-021-06242-0.

Zhang X. High-sensitivity antidrying hydrogel sensor with interpenetrating network crosslinking structure. J. Mater. Sci.: Mater. Electron. 2023. V. 34. N 6. 540. DOI: 10.1007/s10854-023-10006-8.

Yu J.Y., Moon S.E., Kim J.H., Kang S.M. Ultrasensitive and highly stretchable multiple‑crosslinked ionic hydrogel sensors with longterm stability. Nano-Micro Lett. 2023. V. 15. N 1. 51. DOI: 10.1007/s40820-023-01015-7.

Karimzadeh Z., Mahmoudpour M., Rahimpour E., Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv. Colloid Interface Sci. 2022. V. 305. 102705. DOI: 10.1016/j.cis.2022.102705.

Li M., Wang H., Hu J., Hu J., Zhang S., Yang Z., Li Y., Cheng Y. Smart hydrogels with antibacterial properties built from all natural building blocks. Chem. Mater. 2019. V. 31. N 18. P. 7678-7685. DOI: 10.1021/acs.chemmater.9b02547.

Kalia S. Polymeric hydrogels as smart biomaterials. Switzerland: Springer Ser. on Polym. and Comp. Mater. 2016. 243 p. DOI: 10.1007/978-3-319-25322-0.

Rungsima C., Boonyan N., Klorvan M., Kusuktham B. Hydrogel sensors with pH sensitivity. Polym. Bull. 2021. V. 78. N 16. P. 5769-5787. DOI: 10.1007/s00289-020-03398-8.

Mitura S., Sionkowska A., Jaiswal A. Biopolymers for hydrogels in cosmetics: review. J. Mater. Sci.: Mater. in Med. 2020. V. 31. N 6. 50. DOI: 10.1007/s10856-020-06390-w.

Neethu T.M., Dubey P., Kaswala A. Prospects and applications of hydrogel technology in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018. V. 7. N 5. P. 3155-3162. DOI: 10.20546/ijcmas.2018.705.369.

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G., Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski C., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N. N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsygankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocyclic compounds – a key building block in new functional materials and molecular devices. Macroheterocycles. 2020. V. 13. N 4. P. 311-467. DOI: 10.6060/mhc200814k.

Krivenko A.P., Vasilkova N.O., Nikulin A.V., Sorokin V.V. Methodology of «green» chemistry in the synthesis of substituted 2-aminopyranes (pyridine)-3-carbonitrile. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 9. P. 13-19 (in Russian). DOI: 10.6060/ivkkt.20226509.6526.

Sowmiah S., Cheng C.I., Chu Y.H. Ionic liquids for green organic synthesis. Curr. Org. Synth. 2012. V. 9. N 1. P. 74-95. DOI: 10.2174/157017912798889116.

Vygodsky Ya.S., Lozinskaya E.I., Shaplov A.S. Synthesis of polymers in ionic liquids. Ros. Khim. Zhurn. 2004. V. 48. N 6. P. 40–50 (in Russian).

Ibragimova M.D. G., Azizov A.G., Pashaeva Z.N.G., Ab-dullayeva F.M., Yusifzade F.Y., Dadasheva S.D. Application of ionic liquids in polymer synthesis processes as a solvent and catalyst. Khim. Inter. Ustojch. Razvitiya. 2015. V. 23. P. 225–233 (in Russian). DOI: 10.15372/KhUR20150301.

Toropceva A.M., Belogorodskaya A.V., Bondarenko V.M. Laboratory workshop on chemistry and technology of macromolecular compounds. L.: Khimiya. 1972. 416 p. (in Russian).

Perez J.L., Arco S. Synthesis and Characterization of 1-octyl-3-methylimidazolium bromide [OMIM]Br ionic liquid as a potential antifungal agent. J. Chin. Chem. Soc. 2014. V. 61. P. 935-939. DOI: 10.1002/jccs.201300555.

Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001. V. 3. N 4. P. 156-164. DOI: 10.1039/B103275P.

Salnikova M.A., Lubimova T.V., Glazynov A.V., Syrbu S.A., Semeikin A.S., Koifman O.I. Phenyl Substituted Porphyrins. Part 4. Acylation of Hydroxyphenylporphyrins. Macroheterocycles. 2013. V. 6. N 1. P. 53-58. DOI: 10.6060/ mhc130118s.

Wu N., Yu H., Sun M., Li Z., Zhao F., Ao Y., Chen H. Investigation on the Structure and Mechanical Properties of Highly Tunable Elastomeric Silk Fibroin Hydrogels Cross-Linked by γ-Ray Radiation. Appl. Bio Mater. 2020. V. 3. N 1. P. 721-734. DOI: 10.1021/acsabm.9b01062.

Wong R.S.H., Ashton M., Dodou K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics. 2015. V. 7. N 3. P. 305-319. DOI: 10.3390/pharmaceutics7030305.

Shin Y., Choi J., Na J.H., Kim S.Y. Thermally triggered soft actuators based on a bilayer hydrogel synthesized by gamma ray irradiation. Polymer. 2021. V. 212. 123163. DOI: 10.1016/j.polymer.2020.123163.

Borova S., Tokarev V., Stahlhut P., Luxenhofer R. Cross-linking of hydrophilic polymers using polyperoxides. Colloid Polym. Sci. 2020. V. 298. N 12. P. 1699-1713. DOI: 10.1007/ s00396-020-04738-w.

Belali S., Karimi A.R., Hadizadeh M. Novel nanostructured smart, photodynamic hydrogels based on poly(N-isopropylacrylamide) bearing porphyrin units in their cross-link chains: A potential sensitizer system in cancer therapy. Polymer. 2017. V. 109. P. 93-105. DOI: 10.1016/j.polymer.2016.12.041.

Rizzi V., Gubitosa J., Fini P., Fraix A., Sortino S., Agostiano A., Cosma P. Development of spirulina sea-weed raw extract/polyamidoamine hydrogel system as novel platform in photodynamic therapy: photostability and photoactivity of chlorophyll. Mater. Sci. Eng. C. 2021. V. 119. 111593. DOI: 10.1016/j.msec.2020.111593.

Lim Teik Zheng A., Phromsatit T., Boonyuen S., Andou Y. Synthesis of silver nanoparticles/porphyrin/reduced gra-phene oxide hydrogel as dye adsorbent for wastewater treatment. FlatChem. 2020. V. 23. 100174. DOI: 10.1016/j.flatc. 2020.100174.

Pechnikova N.L., Smirnov A.S., Shilov I.V., Lyubimtsev A.V., Mileeva M.N., Ageeva T.A. Synthesis of porphyrin-containing hydrogels under microwave radiation conditions. Macroheterocycles. 2021. V. 14. N 4. P. 328-333. DOI: 10.6060/mhc214076p.

Pechnikova N.L., Venediktov E.A., Shilov I.V., Korobova V.D., Ageeva T.A. Luminescence-spectral investigation of the stability of meso-substituted porphyrins in radical copoly-merization with acrylamide. J. Appl. Spectrosc. 2023. V. 90. N 3. P. 635-638. DOI: 10.1007/s10812-023-01576-w.

Published
2024-05-04
How to Cite
Pechnikova, N. L., Smirnov, A. S., Lyubimtsev, A. V., Aleksandriiskiy, V. V., & Ageeva, T. A. (2024). SYNTHESIS OF POLYACRYLAMIDE HYDROGELS WITH PORPHYRIN FRAGMENTS IN THE SIDE CHAIN IN THE PRESENCE OF IMIDAZOLIUM IONIC LIQUIDS. ChemChemTech, 67(6), 73-79. https://doi.org/10.6060/ivkkt.20246706.7053
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)