QUANTITATIVE ANALYSIS OF AMINOALCOHOLS AND POLYAMINES USING EFFECTIVE CARBON NUMBER

  • Yulia V. Demidova Saint-Petersburg State Institute of Technology (Technical University)
  • Pavel A. Demidov JCS "Himtek Engineering"
  • Vyacheslav V. Potekhin JCS "Himtek Engineering"
Keywords: gas liquid chromatography, flame ionization detector, effective carbon number, aminoalcohol, polyamine

Abstract

In gas-liquid chromatographic analysis of substances using a flame ionization detector (FID), the response factor to many organic substances can be calculated using the so-called effective carbon number (ECN). The effective carbon number indicates how many carbon atoms a linear alkane contains, corresponding to the analyte sensitivity of the detector. The actual contribution of each carbon atom to the ECN depends on its bond with other atoms. The methods for calculating ECN described in the literature do not give adequate values of the FID response factor for polyfunctional compounds containing heteroatoms. In this work, the ECN concept has been extended for the analysis of amino alcohols and polyamines using n-butanol as an internal standard. There were experimentally determined relative response coefficients of 17 acyclic and alicyclic compounds containing amine, hydroxyl and ether functional groups. It was shown that the presence of a cycle or a tertiary nitrogen atom does not affect the ECN value. The results obtained showed that the developed method can be used for the quantitative analysis of amino alcohols and polyamines. The advantages of this method lie in the elimination of the need for obtaining high-purity standards, as well as in the accurate preparation and analysis of solutions of these compounds. The technique can be used to quantitatively determine the composition of a multicomponent mixture of substances of known structure.

References

Peng C.T. Prediction of retention indices: V. Influence of electronic effects and column polarity on retention index. J. Chromatogr. A. 2000. V. 903. P. 117–143. DOI: 10.1016/S0021-9673(00)00901-8.

Katritzky A.R., Ignatchenko E.S., Barcock R.A., Lobanov V.S., Karelson, M. Prediction of Gas Chromato-graphic Retention Times and Response Factors Using a General Qualitative Structure-Property Relationships Treatment. Anal. Chem. 1994. V. 66. P. 1799–1807. DOI: 10.1021/ac00083a005.

Jung S.H., Kim S.J., Kim J.S. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor. Biores. Technol. 2012. V. 114. P. 670-676. DOI: 10.1016/j.biortech.2012.03.044.

Frank B., Xie Z.-L. Trunschke A. Higher Alcohol Synthesis: Product Analysis Using the Concept of Effective Carbon Numbers. Chemie Ingenieur Technik. 2013. V. 85. P. 1290-1293. DOI: 10.1002/cite.201300006.

Llorente D.D., Abrodo P.A., de la Fuente E.D., Alonso J.J.M., Alvarez M.D.G., Gomis D.B. A novel method for the determination of total 1,3-octanediols in apple juice via 1,3-dioxanes by solid-phase microextraction and high-speed gas chromatography. J. Chromatogr. A. 2010. V. 1217. P. 2993-2999. DOI: 10.1016/j.chroma.2010.02.074.

Scanlon J.T., Willis D.E. Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept. J. Chromat. Sci. 1985. V. 23. N 8. P. 333–340. DOI: 10.1093/chromsci/23.8.333.

Becker C., Deeb A.A. Teutenberg T., Jochmann M.A., Schmidt T.C. Determination of liquid chromatog-raphy/flame ionization detection response factors for N-heterocycles, carboxylic acids, halogenated compounds, and others. Analyt. Bioanalyt. Chem. 2020. V. 412. P. 171–179. DOI: 10.1007/s00216-019-02222-1.

Kállai M., Balla J. The effect of molecular structure upon the response of the flame ionization detector. Chromatographia. 2002. V. 56. P. 357–360. DOI: 10.1007/BF02491945.

Kállai M., Veres Z., Balla J. Response of flame ionization detectors to different homologous series. Chroma-tographia. 2001. V. 54. P. 511-517. DOI: 10.1007/BF02491209.

Morvai M., Pályka I., Molnár-Perl L. Flame Ionization Detector Response Factors Using the Effective Carbon Number Concept in the Quantitative Analysis of Esters. J. Chromat. Sci. 1992. V. 30. P. 448-452. DOI: 10.1093/chromsci/30.11.448.

Szulejko J.E., Kim Y.H., Kim K.H. Method to predict gas chromatographic response factors for the trace-level analysis of volatile organic compounds based on the effective carbon number concept. J. Sep. Sci. 2013. V. 0. P. 1-10. DOI: 10.1002/jssc.201300543.

Szulejko J.E., Kim K.H. Reevaluation of effective carbon number (ECN) approach to predict response factors of ‘compounds lacking authentic standards or surrogates’ (CLASS) by thermal desorption analysis with GC–MS. Analyt. Chim. Acta. 2014. V. 851. P. 14-22. DOI: 10.1016/j.aca.2014.08.033.

Faiola C.L., Erickson M.H., Fricaud V.L., Jobson B.T., VanReken T.M. Quantification of biogenic volatile organ-ic compounds with a flame ionization detector using the effective carbon number concept. Atmos. Meas. Tech. 2012. V. 5. P. 1911–1923. DOI: 10.5194/amt-5-1911-2012.

Kdllai M., Matte V., Balla J. Effects of Experimental Conditions on the Determination of the Effective Carbon Number. Chromatographia. 2003, V. 57. P. 639-644. DOI: 10.1007/BF02491742.

Mátyási J., Zverger D., Gaál B., Balla J. The Effect of the Linear Velocity on the Detector Response and Effec-tive Carbon Number: The Role of the Experimental Conditions in the Quantitative Analysis. Period. Polytech. Chem. Eng. 2021. V. 65. P. 158-166. DOI: 10.3311/PPch.16130.

Demidova Y.V., Potekhin V.V. Demidov P.A. On Reactivity of Piperazine Aminogrups in Interaction with Eth-ylene Oxide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 11. P. 77-81. DOI: 10.6060/ivkkt.20206311.6188.

Becker C. Development of a thermospray nebulizer interface for liquid chromatography with flame ionization detection and detector response studies of volatile and non-volatile compounds. 2019. Universität Duisburg-Essen. 137 p. DOI: 10.17185/duepublico/70525.

Hore N.R., Russell D.K. Radical pathways in the thermal decomposition of pyridine and diazines: a laser pyrolysis and semi-empirical study. J. Chem. Soc. Perkin Trans. 2. 1998. N 2. P. 269-276. DOI: 10.1039/A706731C.

Torkil H. Mechanism of the flame ionization detector II. Isotope effects and heteroatom effects. J. Chromatogr. A. 1997. V. 782. N 1. P. 81-86. DOI: 10.1016/S0021-9673(97)00483-4.

Jorgensen A.D., Picel K.C., Stamoudis V.C. Prediction of gas chromatography flame ionization detector response factors from molecular structures. Analyt. Chem. 1990. V. 62. P. 683-689. DOI: 10.1021/ac00206a007.

Published
2022-04-12
How to Cite
Demidova, Y. V., Demidov, P. A., & Potekhin, V. V. (2022). QUANTITATIVE ANALYSIS OF AMINOALCOHOLS AND POLYAMINES USING EFFECTIVE CARBON NUMBER. ChemChemTech, 65(5), 30-34. https://doi.org/10.6060/ivkkt.20226505.6548
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)