PARTICLE MASS DITRIBUTION IN BATCH FLUIDIZED BED COATING PROCESS
Abstract
The paper deals with mathematical modeling the coating process of particulate materials. Inter-particle coating variability is one of the main indicators of the encapsulated product quality. The function of particle distribution according to the mass of coverage was shown can be used to characterize the inter-particle coating variability when the thick shells are applied. The paper presents a mathematical model of the batch fluidized bed coating. The model allows predicting the function of particle distribution according to the mass of coverage. The model bases on the population balance equations, derived for the two compartments: a spraying zone and a drying zone. An algorithm for the numerical solution of the function of particle distribution according to the mass of coverage is described. The influences of the main process parameters on the coating uniformity are shown. As the growth rate of the coating mass decreases, the coating variability of the particles decreases too. This is achieved by reducing the flow rate of the coating solution sprayed by the nozzle. As the flow rate of particles through the spraying zone decreases, the coating variability increases at a fixed processing time. The coating variability value CV was proposed for assessment of the coating substance distribution over the encapsulated particles. The simulation results showed a decrease in the CV value during the process, which indicates a decrease in the ununiformity distribution of the mass of the film-forming substance between the particles at the selected process parameters.
References
Guignon B., Duquenoy A., Dumoulin E.D. Fluid bed encapsulation of particles: principles and practice. Dry. Technol. 2002. V. 20. P. 419-447. DOI: 10.1081/DRT-120002550.
Zuidam N.J., Nedovic V.A. Encapsulation technologies for active food ingredients and food processing. New York: Springer Science. 2010. 392 p. DOI: 10.1007/978-1-4419-1008-0.
Lipin A.G., Nebukin V.O., Lipin A.A. Encapsulation of granules in polymer shells as a method of creating controlled release fertilizers. Sovr. Naukoem. Tekhnol. Regional. Prilozhenie. 2017. N 3 (51). P. 86-91 (in Russian).
Tolve R., Galgano F., Caruso M.C., Tchuenbou-Magaia F.L., Condelli N., Favati F., Zhang Z. Encapsulation of health-promoting ingredients: applications in foodstuffs. Int. J. Food Sci. Nutr. 2016. V. 67. P. 888-918. DOI: 10.1080/09637486.2016.1205552.
Beig B., Niazi M.B.Kh, Jahan Z., Hussain A., Zia M.H., Mehran M.T. Coating materials for slow release of nitrogen from urea fertilizer: a review. J. Plant Nutrition. 2020. V. 43. N 10. P. 1510-1533. DOI: 10.1080/01904167.2020.1744647.
Jarosiewicz A., Tomaszewska M. Controlled-Release NPK Fertilizer Encapsulated by Polymeric Membranes. J. Agric. Food Chem. 2003. V. 51. N 2. P. 413–417. DOI: 10.1021/jf020800o.
Ray S., Raychaudhuri U., Chakraborty R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016. V. 13. P. 76-83. DOI: 10.1016/j.fbio.2015.12.009.
Šibanca R., Turkb M., Dreu R. An analysis of the minitablet fluidized bed coating process. Chem. Eng. Res. Des. 2018. V. 134. P. 15–25. DOI: 10.1016/j.cherd.2018.03.020.
Toschkoff G., Khinast J.G. Mathematical modeling of the coating process. Int. J. Pharm. 2013. V. 457. P. 407–422. DOI: 10.1016/j.ijpharm.2013.08.022.
Sahni E., Chaudhuri B. Experiments and numerical modeling to estimate the coating variability in a pan coater. Int. J. Pharm. 2011. V. 418. P. 286–296. DOI: 10.1016/j.ijpharm.2011.05.041.
Pei Ch., Elliott J.A. Asymptotic limits on tablet coating variability based on cap-to-band thickness distributions: A discrete element model (DEM) study. Chem. Eng. Sci. 2017. V. 172. P. 286-296. DOI: 10.1016/j.ces.2017.06.029.
Li L., Kemp I., Palmer M. A DEM-based mechanistic model for scaleup of industrial tablet coating processes. Powder Technol. 2020. V. 364. P. 698-707. DOI: 10.1016/j.powtec.2020.01.087.
Dubey A., Hsia R., Saranteas K., Brone D., Misra T., Muzzio F.J. Effect of speed, loading and spray pattern on coating variability in a pan coater. Chem. Eng. Sci. 2011. V. 66. N 21. P. 5107-5115. DOI: 10.1016/j.ces.2011.07.010.
Suzzi D., Toschkoff G., Radl S., Machold D., Fraser S.D., Glasser B.J., Khinast J.G. DEM simulation of continuous tablet coating: Effects of tablet shape and fill level on inter-tablet coating variability. Chem. Eng. Sci. 2012. V. 69. P. 107–121. DOI: 10.1016/j.ces.2011.10.009.
Xie C., You Y., Ma H., Zhao Y. Mechanism of inter-tablet coating variability: Investigation about the motion behavior of ellipsoidal tablets in a pan coater. Powder Technol. 2021. V. 379. P. 345-361. DOI: 10.1016/j.powtec.2020.10.088.
Ban J., Kumar R., Agarwal S. Scaling Inter-Tablet Coating Variability in a Horizontal Rotating Drum. AIChE J. 2017. V. 63. N 9. P. 3743-3755. DOI: 10.1002/aic.15758.
Venkataramana R., Kapura P.C., Gupta S.S. Modelling of granulation by a two-stage auto-layering mechanism in continuous industrial drums. Chem. Eng. Sci. 2002. V. 57. P. 1685 – 1693. DOI: 10.1016/S0009-2509(02)00070-2.
Seo K-S., Bajracharya R., Lee S.H., Han H-K. Pharmaceutical Application of Tablet Film Coating. Pharmaceutics. 2020. N 12(9). Art. 853. DOI:10.3390/pharmaceutics12090853.
Ku Shaari K.Z., Pandey P., Song Y., Turton R. Monte Carlo simulations to determine coating uniformity in a Wurster fluidized bed coating process. Powder Technol. 2006. V. 166. P. 81-90. DOI: 10.1016/j.powtec.2006.05.001.
Rieck C., Bück, A., Tsotsas E. Stochastic Modelling of Particle Coating in Fluidized Beds. Procedia Eng. 2015. V. 102. P. 996-1005. DOI: 10.1016/j.proeng.2015.01.222.
Kieckhefen P., Lichtenegger T., Pietsch S., Pirker S., Heinrich S. Simulation of spray coating in a spouted bed using recurrence CFD. Particuology. 2019. V. 42. P. 92-103. DOI: 10.1016/j.partic.2018.01.008.
Norouzi H.R. Simulation of pellet coating in Wurster coaters. Int. J. Pharm. 2020. N 590. P. 119931. DOI: 10.1016/j.ijpharm.2020.119931.
Hilton J.E., Ying D.Y., Cleary P.W. Modelling spray coating using a combined CFD-DEM and spherical harmonic formulation. Chem. Eng. Sci. 2013. V. 99. P. 141-160. DOI: 10.1016/j.ces.2013.05.051.
Jiang Zh., Rieck C., Bück A., Tsotsas E. Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach. Chem. Eng. Sci. 2020. V. 211. Art. 115289. DOI: 10.1016/j.ces.2019.115289.
Lipin A.G., Nebukin V.O., Lipin A.A. Assessment of coverage degree during granular material encapsulation in fluidized bed. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 5. P. 84-90 (in Russian). DOI: 10.6060/ivkkt201962fp.5793.
Lipin A.A., Nebukin V.O., Lipin A.G. Simulation of heat and mass transfer processes under granules capsulation in fluidized bed. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 4-5. P. 98-104 (in Russian). DOI: 10.6060/tcct.20186104-05.5624.