WATER TREATMENT AND DISINFECTION BY UV RADIATION OF THE LED MATRIX (365 nm) IN THE FERROUS-PERSULFATE SYSTEM

  • Svetlana A. Popova Baikal Institute of Nature Management
  • Irina M. Tsenter Baikal Institute of Nature Management
  • Natalia M. Garkusheva Baikal Institute of Nature Management
  • Galina G. Matafonova Baikal Institute of Nature Management
  • Valery B. Batoev Baikal Institute of Nature Management
Keywords: water treatment and disinfection, UV LEDs, degradation, inactivation, atrazine, persulfate, microorganisms

Abstract

In this study, the kinetic regularities were studied and the doses of UV radiation were determined for concurrent degradation of herbicide atrazine and inactivation of bacteria Escherichia coli and Enterococcus faecalis in the ferrous-persulfate oxidation system {UV/PS/Fe2+} using a UV-A LED array (365 nm). It was found that the oxidation system {UV/PS/Fe2+} was the most efficient for degrading atrazine and inactivating E. faecalis in a raw: {UV/PS/Fe2+} > {UV/PS} > {PS/Fe2+} > {UV}. The efficiency of E. coli inactivation in the {UV/PS/Fe2+} and {UV/PS} systems was similar, that was attributed to the predominant contribution of high-intensity UV radiation and the higher sensitivity of E. coli to UV radiation than enterococci. The UV dose for degradation of 90% atrazine in the absence of bacteria in the ferrous-persulfate system was 0.48 J/cm2, while these for inactivation of 100% E. coli and E. faecalis without atrazine were 0.94 and 1.43 J/cm2, respectively. The addition of bacteria inhibited the atrazine degradation and decreased the corresponding rate constants (and increase in the UV doses) by one order of magnitude. The inhibition of bacterial inactivation in the presence of herbicide was higher for enterococci. Meanwhile, the required UV doses (7.7 J/cm2) for atrazine degradation were significantly higher than those for total inactivation of E. coli (1.0 J/cm2) and E. faecalis (2.1 J/cm2), and provided the concurrent water disinfection. The obtained results showed the fundamental feasibility and the energy efficiency of one-step water treatment and disinfection in the ferrous-persulfate system, activated by UV-A LED array radiation.

References

Zhong H., Li J., Zhao H., Sun L., Xu A., Xia D., Nevsky A.V. Degradation of acid orange 7 in aqueous solution under presence of iron (Ш), persulphate and visible light irradiation. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2017. V. 60. N 3. P. 48−54 (in Russian). DOI: 10.6060/tcct.2017604.5545.

Popova S.A., Matafonova G.G., Batoev V.B. Sonophoto-chemical oxidation of organic contaminants in aqueous solutions using persulfate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 10. P. 105-109. DOI: 10.6060/ivkkt.20206310.6233.

Xiao R., Liu K., Bai L. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chem. Eng. J. 2019. V. 371. P. 222–232. DOI: 10.1016/j.cej.2019.03.296.

Fiorentino A., Esteban B., Garrido-Cardenas J.A. Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater. J. Hazard. Mater. 2019. V. 378. P. 120737. DOI: 10.1016/j.jhazmat.2019.06.014.

de la Obra Jiménez I., Giannakis S., Grandjean D. Unfolding the action mode of light and homogeneous vs. heterogeneous photo-Fenton in bacteria disinfection and concurrent elimination of micropollutants in urban wastewater, mediated by iron oxides in Raceway Pond Reactors. Appl. Catal. B. 2020. V. 263. P. 118158. DOI: 10.1016/j.apcatb.2019.118158.

López-Vinent N., Cruz-Alcalde A., Malvestiti J.A. Organic fertilizer as a chelating agent in photo-Fenton at neutral pH with LEDs for agricultural wastewater reuse: Micropollutant abatement and bacterial inactivation. Chem. Eng. J. 2020. V. 388. P. 124246. DOI: 10.1016/j.cej.2020.124246.

Marjanovic M., Giannakis S., Grandjean D. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water. Water Res. 2018. V.140. P. 220–231. DOI: 10.1016/j.watres.2018.04.054.

Rodríguez-Chueca J., Giannakis S., Marjanovic M. Solarassisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water. Appl. Catal. B. 2019. V. 248. P. 62–72. DOI: 10.1016/j.apcatb.2019.02.018.

Rodríguez-Chueca J., García-Cañibano C., Lepistö R.-J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes. J. Hazard. Mater. 2019. V. 372. P. 94–102. DOI: 10.1016/j.jhazmat.2018.04.044.

Popova S., Matafonova G., Batoev V. Simultaneous atrazine degradation and E. coli inactivation by UV/S2O82-/Fe2+ process under KrCl excilamp (222 nm) irradiation. Ecotoxi-col. Environ. Saf. 2019. V. 169. P. 169–177. DOI: 10.1016/j.ecoenv.2018.11.014.

Egorov N.S. A guide to practical exercises in microbiology. M.: MGU. 1995. P. 122–125.

Bolton J.R., Cotton C.A. The Ultraviolet Disinfection Handbook. Denver, CO: AWWA. 2008. 150 p.

Jin S., Mofidi A.A., Linden K.G. Polychromatic UV fluence measurement using chemical actinometry, biodosimetry, and mathematical techniques. J. Environ. Eng. 2006. V. 132. P. 831–841. DOI: 10.1061/(ASCE)0733-9372(2006)132:8(831).

Kheyrandish A., Taghipour F., Mohseni M. UV-LED radiation modeling and its applications in UV dose determination for water treatment. J. Photochem. Photobiol. A: Chem. 2018. V. 352. P. 113–121. DOI: 10.1016/j.jphotochem.2017.10.047.

Keshavarzfathy M., Malayeri A.H., Mohseni M., Taghipour F. UV-LED fluence determination by numerical method for microbial inactivation studies. J. Photochem. Photobiol. A. 2020. V. 392. P. 112406. DOI: 10.1016/j.jphotochem.2020.112406.

Bolton J.R., Stefan M.I., Shaw P., Lykke K.R. Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors. J. Photochem. Photo-biol. A. 2011. V. 222. P. 166–169. DOI: 10.1016/j.jphotochem.2011.05.017.

Goldstein S., Rabani J. The ferrioxalate and iodide-iodate actinometers in the UV region. J. Photochem. Photobiol. A. 2008. V. 193. P. 50–55. DOI: 10.1016/j. jphotochem.2007.06.006.

Beck S.E., Ryu H., Boczek L.A. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 2017. V. 109. P. 207–216. DOI: 10.1016 / j.watres.2016.11.024.

Manoj P., Prasanthkumar K.P., Manoj V.M., Aravind U.K., Manojkumar T.K., Aravindakumar C.T. Oxidation of substituted triazines by sulfate radical anion (SO4●-) in aqueous medium: A laser flash photolysis and steady state radiolysis study. J. Phys. Org. Chem. 2007. V. 20. P. 122-129. DOI: 10.1002/poc.1134.

Garkusheva N., Matafonova G., Tsenter I. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fentonlike process using persulfate. J. Environ. Sci. Health A. 2017. V. 52. P. 849–855. DOI: 10.1080/10934529.2017.1312188.

Moncayo-Lasso A., Mora-Arismendi L.E., Rengifo-Herrera J.A. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and nearneutral photo-Fenton processes under simulated solar light. Photochem. Photobiol. Sci. 2012. V. 11. P. 821–827. DOI: 10.1039/c2pp05290c.

Timchak E., Timchak E., Gitis V. A combined degradation of dyes and inactivation of viruses by UV and UV/H2O2. Chem. Eng. J. 2012. V. 192. P. 164–170. DOI: 10.1016/j.cej.2012.03.054.

Barrera M., Mehrab M., Gilbride K.A. Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem. Eng. Res. Des. 2012. V. 90. P. 1335–1350. DOI: 10.1016/j.cherd.2011.11.018.

Subramanian G., Parakh P., Prakash H. Photodegradation of methyl orange and photoinactivation of bacteria by visible light activation of persulfate using a tris (2,2’-bipyridyl)ruthenium (II) complex. Photochem. Photobiol. Sci. 2013. V. 12. P. 456–466. DOI: 10.1039/c2pp25316j.

He J., Zeng X., Lan S., Lo I.M.C. Reusable magnetic Ag/Fe, N-TiO2/Fe3O4@SiO2 composite for simultaneous photocatalytic disinfection of E. coli and degradation of bisphenol A in sewage under visible light. Chemosphere. 2019. V. 217. P. 869–878. DOI: 10.1016/j.chemosphere.2018.11.072.

Zhou S., Li L., Wu Y., Zhu S., Zhu N., Bu L. UV365 induced elimination of contaminants of emerging concern in the presence of residual nitrite: roles of reactive nitrogen species. Water Res. 2020. V. 178. P. 115829. DOI: 10.1016/j.watres.2020.115829.

Li B., Ma X., Li W, Chen Q., Deng J., Li G. Factor affecting the role of radicals contribution at different wavelengths, degradation pathways and toxicity during UV-LED/chlorine process. Chem. Eng. J. 2020. V. 392. P. 124552. DOI: 10.1016/j.cej.2020.124552.

Stanley J., Patras A., Pendyala B., Vergne M.J., Bansode R.R. Performance of a UV-A LED system for degradation of aflatoxins B1 and M1 in pure water: kinetics and cytotoxicity study. Sci. Rep. 2020. V. 10. P. 13473. DOI: 10.1038/s41598-020-70370-x.

Ferreira L.C., Fernandes J.R., Rodríguez-Chueca J., Peres J.A., Lucas M.S., Tavares P.B. Photocatalytic degra-dation of an agroindustrial wastewater model compound us-ing a UV LEDs system: kinetic study. J. Environ. Manag. 2020. V. 269. P. 110740. DOI: 10.1016/j.jenvman.2020.110740.

Tan C., Wu H., He H., Lu X., Gao H., Deng J., Chu W. Antiinflammatory drugs degradation during LED-UV365 photolysis of free chlorine: roles of reactive oxidative species and formation of disinfection byproducts. Water Res. V. 185. P. 116252. DOI: 10.1016/j.watres.2020.116252.

de la Obra I., García E.B., García Sánchez J.L., Casas López J.L., Sánchez Pérez J.A. Low cost UVA-LED as a radiation source for the photo-Fenton process: a new approach for micropollutant removal from urban wastewater. Photochem. Photobiol. Sci. 2017. V. 16. P. 72–8. DOI: 10.1039/C6PP00245E.

Malkhasian A., Izadifard M., Achari G., Langford C. Photocatalytic degradation of agricultural antibiotics using a UV-LED light source. J. Environ. Sci. Health B. 2014. V. 49. P. 35–40. DOI: 10.1080/03601234.2013.836871.

Serna-Galvis E.A., Troyon J.A., Giannakis S., Torres-Palma R.A., Carena L., Vione D. Kinetic modeling of lag times during photoinduced inactivation of E. coli in sunlit surface waters: unraveling the pathways of exogenous action. Water Res. 2019. 163. P. 114894. DOI: 10.1016/j.watres.2019.114894.

Schlegel G. General microbiology. M.: Mir. 1987. 567 p. (in Russian).

Methodical instructions. The use of ultraviolet radiation in the disinfection of swimming pool water. 1998. https://docs.cntd.ru/document/1200011524

Chen P.-Y., Chu X.-N., Liu L., Hu J.-Y. Effects of salinity and temperature on inactivation and repair potential of En-terococcus faecalis following medium- and low-pressure ultraviolet irradiation. J. Appl. Microbiol. 2016. V. 120. N 3. P. 816-825. DOI: 10.1111/jam.13026.

Mori M., Hamamoto A., Takahashi A., Nakano M., Wakikawa N., Tachibana S. Development of a new water sterilization device with a 365 nm UV-LED. Med. Biol. Eng. Comput. 2007. V. 45. P. 1237–1241. DOI: 10.1007/s11517-007-0263-1.

Hamamoto M., Mori A., Takahashi M., Nakano N., Wakikawa N., Akutagawa M. New water disinfection sys-tem using UVA lightemitting diodes. J. Appl. Microbiol. 2007. V. 103. P. 2291–2298. DOI: 10.1111/j.1365-2672.2007.03464.x.

Lui G.Y., Roser D., Corkish R., Ashbolt N.J., Stuetz R. Pointof-use water disinfection using ultraviolet and visible lightemitting diodes. Sci. Tot. Environ. 2016. V. 553. P. 626–635. DOI: 10.1016/j.scitotenv.2016.02.039.

Prasad A., Ganzle M., Roopesh M.S. Inactivation of Esch-erichia coli and Salmonella using 365 and 395 nm high intensity pulsed light emitting diodes. Foods. 2019. V. 8. P. 679. DOI: 10.3390/foods8120679.

Song K., Mohseni M., Taghipour F. Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. Water Res. 2019. V. 163. P. 114875. DOI: 10.1016/j.watres.2019.114875.

Xiong P., Hu J. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system. Water Res. 2013. V. 47. P. 4547–4555. DOI: 10.1016/j.watres.2013.04.056.

Montenegro-Ayo R., Barrios A.C., Mondal I., Bhagat K., Morales-Gomero J.C., Abbaszadegan M. Portable pointof-use photoelectrocatalytic device provides rapid water disinfection. Sci. Tot. Environ. 2020. V. 737. P. 140044. DOI: 10.1016/j.scitotenv.2020.140044.

Published
2022-01-15
How to Cite
Popova, S. A., Tsenter, I. M., Garkusheva, N. M., Matafonova, G. G., & Batoev, V. B. (2022). WATER TREATMENT AND DISINFECTION BY UV RADIATION OF THE LED MATRIX (365 nm) IN THE FERROUS-PERSULFATE SYSTEM. ChemChemTech, 65(2), 134-143. https://doi.org/10.6060/ivkkt.20226502.6457
Section
ECOLOGICAL PROBLEMS of Chemistry and Chemical Technology