COMPOSITE POLYPORPHYRIN FILMS BASED ON 5,10,15,20-TETRAKIS(3-AMINOPHENYL)PORPHYRIN METAL COMPLEXES FOR ELECTROCATALYTIC OXYGEN REDUCTION
Abstract
In this work the results of studies on the electrochemical deposition of polyporphyrin films based on two different metal porphyrins: iron porphyrin and manganese porphyrin, as well as a composite film based on these two metal complexes are presents. The metalloporphyrins were deposited separately and then together on a glassy carbon electrode. The cyclic voltammogram (CV) of the composite deposition process shows both the features of the CV behavior characteristic of individual porphyrins and new changes in the CV shape and the appearance of a new peak on the cathode branch. The effect of electrodeposition parameters on the efficiency of film formation in the case of homopolymer deposition and on the composite composition in the case of co-deposition of two metal complexes was studied. For Mn(III)ClT(3-NH2Ph)P and Fe(III)ClT(3-NH2Ph)P, a change in the potential sweep rate from 20 to 100 mV/s leads to a significant increase in the film thickness. For a composite film, an increase in the potential sweep rate leads to a significant decrease in the film thickness and a change in the composition of the composite. There is no strong interaction between Mn(III)ClT(3-NH2Ph)P and Fe(III)ClT(3-NH2Ph)P in DCM solution as shown by spectral studies. The bands in the spectrum of the mixture of porphyrins are not shifted relative to the bands in the spectrum of individual compounds, which suggests the additivity of the spectral contributions when studying a mixture of these two porphyrins and a polyporphyrin film based on them. The obtained polyporphyrins were tested for catalytic activity in the reaction of oxygen electroreduction. The highest catalytic activity was observed for a composite based on two metal complexes compared with films of individual porphyrins, which suggests the presence of a synergistic effect.
References
Vu H., Goncalves F., Philippe R., Lamouroux E., Cor-rias M., Kihn Y., Plee D., Kalck P., Serp P. Bimetallic ca-talysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. J. Catal. 2006. V. 240. N 1. P. 18-22. DOI: 10.1016/j.jcat.2006.03.003.
Zhang Y.J., Maroto-Valiente A., Rodriguez-Ramos I., Xin Q., Guerrero-Ruiz A. Synthesis and characterization of carbon black supported Pt–Ru alloy as a model catalyst for fuel cells. Catal. Today. 2004. V. 93. P. 619-626. DOI: 10.1016/j.cattod.2004.06.017.
Zhang B.W., Sheng T., Wang Y.X., Qu X.M., Zhang J.M., Zhang Z.C., Liao H.G., Zhu F.C., Dou S.X., Jiang Y.X., Sun S.G. Platinum–cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal. 2017. V. 7. P. 892-895. DOI: 10.1021/acscatal.6b03021.
Diao W., Tengco J.M.M., Regalbuto J.R., Monnier J.R. Preparation and characterization of Pt–Ru bimetallic catalysts synthesized by electroless deposition methods. ACS Catal. 2015. V. 5. N 9. P. 5123-5134. DOI: 10.1021/acscatal.5b01011.
Wang C., Chi M., Li D., Van Der Vliet D., Wang G., Lin Q., Mitchell J.F., More K.L., Markovic N.M., Stamen-kovic V.R. Synthesis of homogeneous Pt-bimetallic nano-particles as highly efficient electrocatalysts. ACS Catal. 2011. V. 1. N 10. P. 1355-1359. DOI: 10.1021/cs200328z.
Deng W., Kang T., Liu H., Zhang J., Wang N., Lu N., Ma Y., Umar A., Guo Z. Potassium hydroxide activated and nitrogen doped graphene with enhanced supercapacitive behavior. Sci. Adv. Mater. 2018. V. 10. N 7. P. 937-949. DOI: 10.1166/sam.2018.3279.
Zhang L., Yu W., Han C., Guo J., Zhang Q., Xie H., Sun Z., Shao Q., Guo X., Hao L., Zheng Y., Guo Z. Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 2017. V. 164. N 9. P. H651-H656. DOI: 10.1149/2.1531709jes.
Song B., Wang T., Sun H., Shao Q., Zhao J., Song K., Hao L., Wang L., Guo Z. Two-step hydrothermally synthe-sized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 2017. V. 46. P. 15769-15777. DOI: 10.1039/C7DT03003G.
Novoselov K.S., Fal′ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for grapheme. Nature. 2012. V. 490. P. 192-200. DOI: 10.1038/nature11458.
Zhu Y., Murali S., Cai W., LiX., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: synthesis, proper-ties, and applications. Adv. Mater. 2010. V. 22. P. 3906-3924. DOI: 10.1002/adma.201001068.
Wang M., Torbensen K., Salvatore D., Ren Sh., Joulié D., Dumoulin F., Mendoza D., Lassalle-Kaiser B., Işci U., Berlinguette C.P., Robert M. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 2019. V. 10. P. 3602. DOI: 10.1038/s41467-019-11542-w.
Gonglach S., Paul S., Haas M., Pillwein F., Sreejith S.S., Barman S., De R., Müllegger S., Gerschel P., Apfel U.-P., Coskun H., Aljabour A., Stadler P., Schöfberger W., Roy S. Molecular cobalt corrole complex for the heterogene-ous electrocatalytic reduction of carbon dioxide. Nat. Commun. 2019. V. 10. P. 3864. DOI: 10.1038/s41467-019-11868-5.
Wang Y.R., Huang Q., He C.T., Chen Y., Liu J., Shen F.-C., Lan Y.-Q. Oriented electron transmission in polyox-ometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018. V. 9. P. 4466. DOI: 10.1038/s41467-018-06938-z.
Kobayashi N., Nishiyama Y. Catalytic electroreduction of molecular oxygen at glassy carbon electrodes with immobilized iron porphyrins containing zero, one, or four amino groups. J. Electroanal. Chem. Interfac. Electrochem. 1984. V. 181. N 1–2. P. 107-117. DOI: 10.1016/0368-1874(84)83623-0.
Belova A.I., Kwabi D.G., Yashina L.V., Shao-Horn Y., Itkis D.M. Mechanism of oxygen reduction in aprotic Li–Air batteries: the role of carbon electrode surface structure. J. Phys. Chem. C. 2017. V. 121. P. 1569-1577. DOI: 10.1021/acs.jpcc.6b12221.
Tesakova M.V., Noskov A.V., Parfenyuk V.I., Bazanov M.I., Berezina N.M. Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes. Russ. J. Phys. Ch. A. 2012. V. 86. N 1. P. 9-13. DOI: 10.1134/S0036024411120326.
Noskov A.V., Tesakova M.V., Popov I.A., Parfenyuk V.I. Kinetics of oxygen electroreduction reaction on rotating electrode activated by derivatives of tetraphenylporphyrin. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2011. V. 54. N 12. P. 55-58 (in Russian).
Kuzmin S.M., Chulovskay S.A., Koifman O.I., Par-fenyuk V.I. Polyporphyrin electrocatalytic films obtained via new superoxide-assisted electrochemical deposition method. Electrochem. Commun. 2017. V. 83. P. 28-32. DOI: 10.1016/j.elecom.2017.08.016.
Jasinski R. A new fuel cell cathode catalyst. Nature. 1964. V. 201. P. 1212-1213. DOI: 10.1038/2011212a0.
Buttry D.A., Anson F.C. New strategies for electrocatalysis at polymer-coated electrodes. Reduction of dioxygen by cobalt porphyrins immobilized in Nafion coatings on graphite electrodes. J. Am. Chem. Soc. 1984. V. 106. P. 59-64. DOI: 10.1021/ja00313a013.
Berezina N.M., Do Ngoc Minh, Bazanov M.I., Semeikin A.S., Maksimova A.A. Synthesis and electrochemical characteristics of Fe (III)-etio porphyrin II and its 5,15-bis(pyrid-3-yl) derivative. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 2. P. 29-34. DOI: 10.6060/tcct.20186102.5652.
Parfenyuk V.I., Koifman O.I. Macroheterocyclic compounds - a key building block in new functional materials and molecular devices. Macroheterocycles. 2020. V. 13. N 4. P. 373-378 (in Russian). DOI: 10.6060/mhc200814k.
Kasemthaveechok S., Fabre B., Loget G., Gramage-Doria R. Remote ion-pair interactions in Fe-porphyrin-based molecular catalysts for the hydrogen evolution reaction. Catal. Sci. Technol. 2019. V. 9. P. 1301-1308. DOI: 10.1039/C8CY02164C.
Wang L., Zhang Z., Li M., Li Q., Wang B., Wang S., Zhou H., Mao B. Surface engineering of porphyrin coordi-nation on a carbon nanotube for efficient hydrogen evolution. Chem. Cat. Chem. 2020. V. 12. P. 2469-2477. DOI: 10.1002/cctc.202000104.
Davethu P.A., de Visse S.P. CO2 reduction on an ironporphyrin center: a computational study. J. Phys. Chem. A. 2019. V. 123. N 30. P. 6527-6535. DOI: 10.1021/acs.jpca.9b05102.
Zhou X., Ji H. Manganese porphyrin immobilized on montmorillonite: a highly efficient and reusable catalyst for the aerobic epoxidation of olefins under ambient conditions. J. Porphyr. Phthal. 2012. V. 16. N 9. P. 1032-1039. DOI: 10.1142/S1088424612500721.
Ucoski G.M., Nunes F.S., Defreitas-Silva G., Idemori Y.M., Nakagaki S. Metalloporphyrins immobilized on sili-cacoated Fe3O4 nanoparticles: Magnetically recoverable catalysts for the oxidation of organic substrates. Appl. Catal. A: Gen. 2013. V. 459. N 24. P. 121-130. DOI: 10.1016/j.apcata.2013.03.012.
Sun C., Hu B., Liu Z. Efficient and ecofriendly options for the chemoselective oxidation of alkenes using manganese porphyrin and dioxygen. Chem. Eng. J. 2013. V. 232. P. 96-103. DOI: 10.1016/j.cej.2013.07.067.
Tesakova M.V., Lutovac M., Parfenyuk V.I. Electrodeposition of catalytically active polyporphyrin films of metal complexes of amino-substituted tetraphenylporphyrins. J. Porphyr. Phthal. 2018. V. 22. P. 1047-1053. DOI: 10.1142/S108842461850102X.
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Superoxide-assisted electrochemical deposition of Mn-aminophenyl porphyrins: Process characteristics and properties of the films. Electroch. Acta. 2018. V. 292. P. 256-267. DOI: 10.1016/j.electacta.2018.09.127.
Tesakova M.V., Koifman O.I., Parfenyuk V.I. Electropolymerization of poly-5,10,15,20-tetrakis(p-aminophenyl)porphyrin in different deposition modes and solvents. J. Porphyr. Phthal. 2018. V. 22. P. 632–639. DOI: 10.1142/S1088424618500864.
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Highly conductive polyporphyrin films obtained by superoxide-assisted electropolymerization of para – aminophenyl porphyrin. Mater. Chem. Phys. 2020. V. 241. P. 122394. DOI: 10.1016/j.matchemphys.2019.122394.
Semeikin A.S., Koifman O.I., Berezin B.D. Synthesis of tetraphenylporphins with active groups in the phenyl rings. 1. Preparation of tetrakis(4-aminophenyl)porphin. Chem. Heterocycl. Compd. 1982. V. 18. P. 1046-1047. DOI: 10.1007/BF00503191.
Semeikin A.S., Koifman O.I., Berezin B.D. Synthesis of tetra(nitrophenyl)porphyrins and their reduction to tet-ra(aminophenyl)porphyrins. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1985. V. 28. N 11. P. 47-51 (in Russian).
Salnikova M.A., Lubimova T.V., Glazunov A.V., Syrbu S.A., Semeikin A.S. Phenyl substituted porphyrins. Part 5. Acylation of aminophenylporphyrins. Macroheterocycles. 2014. V. 7. N 3. P. 249-255 (in Russian). DOI: 10.6060/mhc140510s.
Adler A.D., Longo F.R., Kampas F., Kim J. On the preparation of metalloporphyrins. J. Inorg. Nuc. Chem. 1970. V. 32. N 7. P. 2443-2445. DOI: 10.1016/0022-1902(70)80535-8.
Kuzmin S.M., Chulovskaya S.A., Tesakova M.V., Semeikin A.S., Parfenyuk V.I. Solvent and electrode influ-ence on electrochemical forming of poly-Fe(III)-aminophenylporphyrin films. J. Porphyr. Phthal. 2017. V. 21. P. 555-567. DOI: 10.1142/S1088424617500559.
Tesakova M.V., Balmasov A.V., Parfenyuk V.I. Physical and chemical properties of polyporphyrin films based on the Mn complexes of amino-substituted tetraphenylporphyrin. Inorg. Mater. App. Res. 2019. V. 10. N 5. P. 1164-1170. DOI: 10.1134/S2075113319050319.
Parfenyuk V.I., Tesakova M.V., Chulovskaya S.A., Kuzmin S.M. Electrodeposition and characterization of pol-yporphyrin films based on Mn complexes of amino substituted tetraphenylporphyrins. Macroheterocycles. 2019. V. 12. N 2. P. 154-164 (in Russian). DOI: 10.6060/mhc190232p.