HYDROGEN BOND IN POTENTIALLY MESOGENIC MOLECULAR COMPLEXES OF 4-(PHENYLAZO)BENZOIC ACID AND 4-(PHENYLAZO)PHENOL WITH PYRIDINE DERIVATIVES

Keywords: supramolecular complexes, hydrogen bond, azobenzene derivatives, quantum chemical calculations, DFT, IR spectroscopy, liquid crystals

Abstract

Using experimental and theoretical methods, it has been shown that hydrogen-bonded molecular complexes in two-component systems based on 4-pyridyl-4'-n-alkyloxybenzoates (n = 7, 12) with 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol (composition of 1:1) are formed. Quantum chemistry methods (DFT (B3LYP)/cc-pVTZ) were used to determine the conformational properties of 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol molecules. It has been shown that the introduction of 4-carboxy and 4-hydroxy groups into the azobenzene molecule has practically no effect on the energy characteristics of the trans-cis isomerization process. The energy, geometric, and electronic characteristics of intermolecular hydrogen bonds in the H-complexes have been estimated. The calculations showed that the H-complexes of 4-pyridyl-4-n-propyloxybenzoate with 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol differ significantly from each other in geometric structure: the complex with 4-(phenylazo)benzoic acid – rod-shaped, complex with 4-(phenylazo)phenol – angular. A comparison of the energy characteristics of H-complexes, as well as the characteristics of hydrogen bonds, showed that a stronger hydrogen bond is formed in the complex with 4-(phenylazo)benzoic acid than in the complex with 4-(phenylazo)phenol. The results of modeling dimers of molecules of 4-(phenylazo)benzoic acid, 4-(phenylazo)phenol, reproducing intermolecular interactions in crystals, and their hydrogen-bonded complexes allow to conclude that in the process of self-organization of systems with a composition of 1:1, associates of 4-(phenylazo)benzoic acid molecules, associates of 4-(phenylazo)phenol molecules will be broken and H-complexes with 4-pyridyl-4'-alkyloxybenzoates will be formed instead. Changes in the experimental IR spectra recorded for the initial components and for systems with a composition of 1:1 confirm the formation of molecular complexes. The structural units of the studied systems based on 4-pyridyl-4'-alkyloxybenzoates with 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol with a composition of 1:1 can be considered supramolecules, formed by hydrogen bonding. The structure of supermolecules and the presence of their geometric anisotropy indicate their potential mesogenicity. The sample of H-complexes of 4-(phenylazo)phenol and 4-pyridyl-4'-n-dodecyloxybenzoate (composition of 1:1) was studied for the manifestation of mesomorphic properties using the method of polarization thermomicroscopy. The textures registered in a polarizing microscope allow to conclude that the H-complex has a smectic mesophase in the temperature range of 101.4–109.4 °C.

For citation:

Fedorov M.S., Filippov A.A., Filippov I.A., Giricheva N.I., Syrbu S.A., Kiselev M.R. Hydrogen bond in potentially mesogenic molecular complexes of 4-(phenylazo)benzoic acid and 4-(phenylazo)phenol with pyridine derivatives. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 12-23. DOI: 10.6060/ivkkt.20226512.6665.

References

Bisoyi H.K., Li Q. Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chem. Rev. 2022. V. 122. N 5. P. 4887–4926. DOI: 10.1021/acs.chemrev.1c00761.

Lugger Sean J.D., Houben Simon J.A., Foelen Yari, Debije Michael G., Schenning Albert P.H.J., Mulder Dirk J. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2022. V. 122. P. 4946−4975. DOI: 10.1021/acs.chemrev.1c00330.

Cheng X.H., Gao H.F. Hydrogen Bonding for Supramolec-ular Liquid Crystals. In: Hydrogen Bonded Supramolecular Materials. Lecture Notes in Chemistry. Ed. by Z.T. Li, L.Z. Wu. V. 88. Berlin, Heidelberg: Springer. 2015. P. 133−183. DOI: 10.1007/978-3-662-45780-1_5.

Kato T. Selfassembly of phase-segregated liquid crystal structures. Science. 2002. V. 295. N 5564. P. 2414−2418. DOI: 10.1126/science.1070967.

Antipin I.S. Functional supramolecular systems: design and applications. Russ. Chem. Rev. 2021. V. 90. N 8. P. 895−1107. DOI: 10.1070/RCR5011.

Burmistrov V.A., Alexandrijskiy V.V., Koifman O.I. Hydrogen bonding in thermotropic liquid crystals. M.: KRASAND. 2013. 352 p. (in Russian).

Alexandrijskiy V.V., Burmistrov V.A. Hydrogen bonding in calamitic liquid crystal – non-mesogen systems. Zhidk. Krist. Prakt. Ispol. 2008. N 2. P. 5–21 (in Russian).

Sautina N.V., Miftahova E.M., Silakhina K.V., Galyametdinov Y.G. Releasing of acetylhexapeptide-3 usinga lecithin based liquid crystal system. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 5. P. 24–30 (in Russian). DOI: 10.6060/ivkkt.20196205.5772.

Zheng M.-Y., Wei Y.-S., Geng W., Guo N.-N., Zhang P. Synthesis of Multiring Azo-Benzoic Acid Liquid Crystalline Molecules and Their Special Photosensitive Property. Molec. Cryst. Liq. Cryst. 2015. V. 608. N 1. P. 1–13. DOI: 10.1080/15421406.2014.949591.

Ahmed H.A., Hagar M., Aljuhani A. Mesophase behavior of new linear supramolecular hydrogen-bonding complexes. RSC Adv. 2018. V. 8. N 61. P. 34937–34946. DOI: 10.1039/C8RA07692H.

Vapaavuori J., Bazuin C.G., Priimagi A. Supramolecular design principles for efficient photoresponsive polymer–azobenzene complexes. J. Mater. Chem. C. 2018. V. 6. N 9. P. 2168–2188. DOI: 10.1039/C7TC05005D.

Wang X., Vapaavuori J., Bazuin C.G., Pellerin C. Molecular-Level Study of Photoorientation in Hydrogen-Bonded Azopolymer Complexes. Macromolecules. 2018. V. 51. N 3. P. 1077–1087. DOI: 10.1021/acs.macromol.7b02534.

Al-Mutabagani L.A., Alshabanah L.A., Ahmed H.A., Hagar M., Al-Ola K.A.A. New Symmetrical U- and Wavy-Shaped Supramolecular H-Bonded Systems; Geometrical and Mesomorphic Approaches. Molecules. 2020. V. 25. N 6. P. 1420. DOI: 10.3390/molecules25061420.

Johnson J.F., Porter R.S. Liquid Crystals and Ordered Fluids. New York: Plenum Press. 1970. 490 p. DOI: 10.1007/978-1-4684-8214-0.

Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R. In: Vogel’s Textbook of Practical Organic Chemistry. Essex, England: Longman Sci. and Tech. 1989. 1014 p.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Hon-da Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Broth-ers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.02. Wall-ingford CT: Gaussian Inc. 2009.

Zhurko G.A., Zhurko D.A. Chemcraft Program. http://www.chemcraftprog.com/

Becke D.A. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993. V. 98. N 2. P. 1372–1377. DOI: 10.1063/1.464304.

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B. 1988. V. 37. P. 785–789. DOI: 10.1103/PhysRevB.37.785.

Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989. V. 90. P. 1007–1023. DOI: 10.1063/1.456153.

Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 1996. V. 17. N 1. P. 49–56. DOI: 10.1002/(SICI)1096-987X(19960115)17:1%3C49::AID-JCC5%3E3.0.CO;2-0.

Giricheva N.I., Fedorov M.S., Lebedev I.S., Bubnova K.E., Girichev G.V. Structural aspects of transcis isomeri-zation of azobenzene, 4,4′-azopyridine, and azoxybenzene. J. Struct. Chem. 2021. V. 62. N 12. P. 1976–1987. DOI: 10.1134/S0022476621120179.

Yadava K., Qin X., Liu X., Vittal J. Straight, bendable and bent organic crystals. J. Chem. Commun. 2019. V. 55. P. 14749. DOI: 10.1039/C9CC07774J.

Shamuratov E.B., Batsanov A.S., Struchkov Yu.T., Shukurov A., Makhsumov A.G., Sabirov V.Kh. Crystal structure of 4-hydroxyazobenzene. Zhurn. Strukt. Khim. 1991. 32(3). P. 146–148 (in Russian). DOI: 10.1007/BF00745774.

Albayrak C., Gumrukcuoglu I.E., Odabasoglu M., Buyukgungor O. (E)-2-Methyl-4-(phenyl­diazen­yl)phenol. Acta Crystallograph. Sect. E: Struct. Rep. Online. 2007. V. 6. P. o3662. DOI: 10.1107/S1600536807036501.

Giricheva N.I., Syrbu S.A., Fedorov M.S., Bubnova K.E., Girichev G.V., Kiselev M.R. H-complexes in the "4-n-alkoxybenzoic acid: 4-pyridyl 4′-n-alkoxybenzoate" system. IR spectroscopy and quantum chemical calculations. J. Molec. Liq. 2019. V. 277. P. 833–842. DOI: 10.1016/j.molliq.2019.01.029.

Fedorov M.S., Giricheva N.I., Syrbu S.A., Belova E.A., Filippov I.A., Kiselev M.R. New supramolecular hydrogen-bonded liquid crystals based on 4-alkylbenzenesulfonic acids and 4-pyridyl 4′-alkyloxybenzoates: quantum chemical modeling and mesomorphic properties. J. Molec. Struct. 2021. V. 1244. P. 130890. DOI: 10.1016/j.molstruc.2021.130890.

Lebedev I.S., Bubnova K.E., Giricheva N.I., Fedorov M.S., Filippov I.A., Syrbu S.A. Study of structural organi-zation of systems on basis of p-n-propyloxicinnamic acid and nonmesogenes of Ph–X–Ph type. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 4. P. 87–94 (in Russian). DOI: 10.6060/ivkkt.20196204.5973i.

Cambridge Crystallographic Date Centre (CCDC). http://www.ccdc.com.ac.uk.

Hu Y.J., Fu H.B., Bernstein E.R. IR plus vacuum ultravio-let spectroscopy of neutral and ionic organic acid molecules and clusters: acetic acid. J. Chem. Phys. 2006. V. 125. N 18. P. 184308. DOI: 10.1063/1.2378626.

Tolstorozhev G.B., Bel'kov M.V., Skornyakov I.V., Bazyl O.K., Artyukhov V.Y., Mayer G.V., Shadyro O.I., Kuzovkov P.V., Brinkevich S.D., Samovich S.N. Infrared spectroscopy of hydrogen bonds in benzoic acid derivatives. J. Appl. Spectrosc. 2014. V. 81. N 1. P. 109–117. DOI:10.1007/s10812-014-9895-8.

Hosoya H., Tanaka J., Nagakura S. Ultraviolet absorption spectra of monomer and dimer of benzoic acid. J. Molec. Spectrosc. 1962. V. 8. N 1–6. P. 257–275. DOI: 10.1016/0022-2852(62)90027-9.

Syrbu S.A., Fedorov M.S., Giricheva N.I., Novikov V.V., Filippov I.A., Kiselev M.R. Supramolecular complexes based on 4-n-alkoxycinnamic acids and pyridine derivatives: Mesomorphic properties and prospects of applying to tri-bosystems. J. Molec. Liq. 2020. V. 3051. P. 112796. DOI: 10.1016/j.molliq.2020.112796.

Parra M., Hidalgo P., Alderete J. New supramolecular liquid crystals induced by hydrogen bonding between pyridyl–1,2,4–oxadiazole derivatives and 2,5–thiophene di-carboxylic acid. Liq. Cryst. 2005. V. 32. N 4. P. 449–455. DOI: 10.1080/02678290500075142.

Paterson D.A., Martinez-Felipe A., Jansze S.M. Marcelis A.T.M, Storey J.M.D., Imrie C.T. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures pro-vided by temperature-dependent FTIR spectroscopy. Liq. Cryst. 2015. V. 5–6. P. 928–939. DOI: 10.1080/02678292.2015.1037122.

Martinez-Felipe A., Imrie C.T. The role of hydrogen bonding in the phase behaviour of supramolecular liquid crystal dimers. J. Molec. Struct. 2015. V. 1100. P. 429–437. DOI: 10.1016/j.molstruc.2015.07.062.

Pfletscher M., Mezger M., Giese M. On the impact of linking groups in hydrogen-bonded liquid crystals – a case study. Soft Matter. 2018. V. 14. P. 6214–6221. DOI: 10.1039/C8SM00802G.

Pfletscher M., Wölper Ch., Gutmann J. S., Mezgerd M., Giese M. A modular approach towards functional supramo-lecular aggregates – subtle structural differences inducing liquid crystallinity. Chem. Commun. 2016. V. 52. P. 8549–8552. DOI: 10.1039/C6CC03966A.

Barón M. Definitions of basic terms relating to low-molar-mass and polymer liquid crystals (IUPAC Recommendations 2001). Pure Appl. Chem. 2001. V. 73. N 5. P. 845–895. DOI: 10.1351/pac200173050845.

Published
2022-11-08
How to Cite
Fedorov, M. S., Filippov, A. A., Filippov, I. A., Giricheva, N. I., Syrbu, S. A., & Kiselev, M. R. (2022). HYDROGEN BOND IN POTENTIALLY MESOGENIC MOLECULAR COMPLEXES OF 4-(PHENYLAZO)BENZOIC ACID AND 4-(PHENYLAZO)PHENOL WITH PYRIDINE DERIVATIVES. ChemChemTech, 65(12), 12-23. https://doi.org/10.6060/ivkkt.20226512.6665
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)