INFLUENCE OF SILICA FUME ON THE PRODUCTION PROCESS AND PROPERTIES OF POROUS GLASS COMPOSITE

  • Kirill V. Skirdin Tomsk polytechnic university
  • Anastasia Yu. Miskovets Tomsk polytechnic university
  • Olga V. Kazmina Tomsk polytechnic university
Keywords: porous glass composite, tripoli, sodium hydroxide, silica fume, compressive strength, crystallization

Abstract

The article is devoted to the development of the composition and production of a porous glass composite for thermal insulation purposes using a single-stage technology with a reduced NaOH content at temperatures not exceeding 850 °C. Silica-containing natural (tripoli) and technogenic (silica fume) raw materials were used for the synthesis of glass composite. The composition of the charge based on tripoli and silica fume is proposed, which ensures the production of a porous glass composite using energy-saving technology. A mixture of tripoli and silica fume activated with sodium hydroxide is an alternative to the traditional method of producing foam glass materials. The high dispersion of raw materials, the amorphous-crystalline structure of tripoli and the amorphous structure of silica fume ensure a high reactivity of the charge. The novelty of the study lies in reducing the amount of alkali to 10.5% and obtaining a material with increased mechanical strength (up to 4 MPa). It is established that the increased mechanical strength of the material is due to the dissolution of residual quartz and crystallization of cristobalite, as well as the production of a homogeneous fine-porous structure of a porous glass composite with an average pore size of 0.6+ 0.2 mm. Addition of SiO2 to the charge in the form of silica fume in an amount from 10 to 50 wt.% reduces the foaming temperature from 860 to 820 °C and increases the strength of the material from 1.5 MPa (without silica fume) to 4 MPa (30 wt.% of silica fume). The resulting porous glass composite differs from traditional foam glass type heat insulators in increased strength and is considered as a thermal insulation and structural material. The article is of great practical importance, as it solves two problems. On the one hand, the expansion of the raw material base for the production of porous materials with the involvement of waste. On the other hand, the expansion of the scope of application by increasing the strength of the material.

For citation:

Skirdin K.V., Miskovets A.Yu., Kazmina O.V. Influence of silica fume on the production process and properties of porous glass composite. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 84-92. DOI: 10.6060/ivkkt.20236601.6704.

Author Biography

Kirill V. Skirdin, Tomsk polytechnic university

 

The Kizhner Research Center, School of Advanced Manufacturing Technologies, Tomsk Polytechnic University, Lenin Square, 30, Tomsk, 634050, Russia

 

 

References

Kurtulus C., Kurtulus R., Kavas T. Foam glass derived from ferrochrome slag and waste container glass: Synthesis and extensive characterizations. Ceram. Internat. 2021. V. 47. N 17. P. 24997–25008. DOI: 10.1016/j.ceramint.2021.05.228.

Miryuk О.A. Influence of fillerson properties of liquidglass compositions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 12. P. 51-55 (in Russian). DOI: 10.6060/ivkkt.20196212.5915.

Lebullenger R., Chenu S., Rocherullé J., Merdrignac-Conanec O., Cheviré F., Tessier F., Bouzaza A., Brosillon S. Glass foams for environmental applications. J. Non-Crystal. Solids. 2010. V 356. N 44-49. P. 2562-2568. DOI: 10.1016/j.jnoncrysol.2010.04.050.

Dov M., Pears N., Hormadaly J. Synthesis of Pyrextype porous glass made with calcium carbonate as pore forming material. J. Non-Crystal. Solids. 2021.V 564. N 120788. DOI: 10.1016/j.jnoncrysol.2021.120788.

Sasmal N., Garai M., Karmakar B. Preparation and characterization of novel foamed porous glass-ceramics. Mater. Charact. 2015. V. 103. P. 90–100. DOI: 10.1016/j.matchar.2015.03.007.

Lamri Y., Benzerga R., Ayadi A., Gendre L.Le, El-Assal A. Glass foam composites based on tire’s waste for microwave absorption application. J. Non-Crystal. Solids. 2020. V. 537. N 120017. DOI: 10.1016/j.jnoncrysol.2020.120017.

Zhang J., Liu B., Zhang S. A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications. Sci. Total Environ. 2021. V. 781. N 146727. DOI: 10.1016/j.scitotenv.2021.146727.

Marangoni M., Secco M., Parisatto M., Artioli G., Bernardo E., Colombo P., Altlasi H., Binmajed M., Binhussain M. Cellular glass–ceramics from a self foaming mixture of glass and basalt scoria. J. Non-Crystal. Solids. 2014. V. 403 P. 38-46. DOI: 10.1016/j.jnoncrysol.2014.06.016.

Erofeev V., Rodin A., Bochkin V., Ermakov A. The formation mechanism of the porous structure of glass ceramics from siliceous rock. Mag. Civil Eng. 2020. V. 100. N 8. A6. DOI: 10.18720/MCE.100.6.

Ivanov K.S. Optimization of the structure and properties of foam-glass ceramics. Mag. Civil Eng. 2019. V. 89. N 5. P. 52-60. DOI: 10.18720/MCE.89.5.

Zhai C., Zhang J., Zhong Y., Tao X., Wang M., Zhu Y., Yeo J. Producing light, strong foam glass under a low sintering temperature with insights from molecular simulations. J. Non-Crystal. Solids. 2022. V. 582. N 121447. DOI: 10.1016/j.jnoncrysol.2022.121447.

Souza M.T., Maia B.G.O., Teixeira L.B., de Oliveira K.G., Teixeira A.H.B., Novaes de Oliveira A.P. Glass foams produced from glass bottles and eggshell wastes. Proc. Safety Environ. Protect. 2017. V. 111. P. 60-64. DOI: 10.1016/j.psep.2017.06.011.

Mugoni C., Montorsi M., Siligardi C., Andreola F., Lancelotti I., Bernardo E., Barbieri L. Desing of glass foams with low environmental impact. Ceram. Int. 2015. V. 41. P. 3400-3408. DOI: 10.1016/j.ceramint.2014.10.127.

Zhai C., Zhong Y., Liu J., Zhang J., Zhu Y., Wang M., Yeo J. Customizing the properties of borosilicate foam glasses via additions under low sintering temperatures with insights from molecular dynamics simulations. J. Non-Crystal. Solids. 2022. V. 576. N 121273. DOI: 10.1016/j.jnoncrysol.2022.121447.

König J., Petersen R.R., Yue Y. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. J. Non-Crystal. Solids. 2016. V. 447. P. 190–197. DOI: 10.1016/j.jnoncrysol.2016.05.021.

Kazmina О.V., Vereshchagin V.I., Abiyaka A.N. Prospects for use of finely disperse quartz sands in production of foam-glass crystalline materials. Steklo Reram. 2008. V. 65. N 9-10. P. 319–321 (in Russian). DOI: 10.1007/s10717-009-9070-5.

Chen B., Luo Z., Lu A. Preparation of sintered foam glass with high fly ash content. Mater. Lett. 2011. V. 65. P. 3555–3558.

Kourti I., Cheeseman C.R. Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Res., Conser. Recycl. 2010. V. 54. P. 769–775.

Papa Е., Medri V., Kpogbemabou D., Vaccari A., Rossignol S. Porosity and insulating properties of silica-fume based foams. Energy Buildings. 2016. V. 131. P. 223–232. DOI: 10.1016/j.enbuild.2016.09.031.

Erofeev V.T., Rodin A.I., Bochkin V.S., Ermakov A.A. Properties of porous glass ceramics based on siliceous rocks. Mag. Civil Eng. 2021. V. 102. N 2. P. 10202. DOI: 10.34910/MCE.102.2.

Erofeev V.T., Rodin A.I., Kravchuk A.S., Kaznacheev S.V., Zaharova E.A. Biostable silicic rock-based glass ce-ramic foams. Mag. Civil Eng. 2018. V. 84. N 8. P. 48-56. DOI: 10.18720/MCE.84.5.

Manevich V.E., Subbotin R.K., Nikiforov E.A., Senik N.A., Meshkov A.V. Diatomite - silica material for glass in-dustry. Glass and Ceramics. 2012. V. 69. P. 168–172. DOI: 10.1007/s10717-012-9438-9.

Ivanov K.S. Preparation and properties of foam glass-ceramic from diatomite. J. Wuhan Univ. Technol., Mater. Sci. Ed. 2018. V. 33. P. 273-277. DOI: 10.1007/s11595-018-1817-8.

da Silva R.C., Kubaski E.T., Tenorio-Neto E.T., Lima-Tenorio M.K., Tebcherani S.M. Foam glass using sodium hydroxide as foaming agent: study on the reaction mechanism in sodalime glass matrix. J. Non-Crystal. Solids. 2019. V. 511. P. 177-182. DOI: 10.1016/j.jnoncrysol.2019.02.003.

Bento A.C., Kubaski E.T., Sequinel T., Pianaro S.A., Varela J.A., Tebcherani S.M. Glass foam of macroporosity using glass waste and sodium hydroxide as the foaming agent. Ceram. Int. 2013. V. 39. P. 2423-2430. DOI: 10.1016/j.ceramint.2012.09.002.

Guo H.W., Gong Y.X., Gao S.Y. Preparation of high strength foam glass–ceramics from waste cathode ray tube. Mater. Lett. 2010.V. 64. P. 997–999. DOI: 10.1016/j.matlet.2010.02.006.

Bernardo E., Scarinci G., Bertuzzi P., Ercole P., Ramon L. Recycling of waste glasses into partially crystallized glass foams. J. Porous Mater. 2010. V. 17. P. 359–365. DOI: 10.1007/s10934-009-9286-3.

Taurino R., Lancellotti I., Barbieri L., Leonelli C. Glass-ceramic foams from borosilicate glass waste. Internat. J. Appl. Glass Sci. 2014. V. 5. N 2. P. 136–145. DOI: 10.1111/ijag.12069.

Tulyaganov D.U., Fernandes H.R., Agathopoulos S., Ferreira J.M.F. Preparation and characterization of high compressive strength foams from sheet glass. J. Porous Mater. 2006. V. 13. N 2. P. 133–139. DOI: 10.1007/s10934-006-7014-9.

Huang K., Li Y., Li S., Wang L., Wang S. Effects of microsilica addition on the microstructure and properties of alu-mina foams. Ceram. Int. 2016. V. 42. N 14. P. 16401–16404. DOI: 10.1016/j.ceramint.2016.07.134.

Published
2023-01-01
How to Cite
Skirdin, K. V., Miskovets, A. Y., & Kazmina, O. V. (2023). INFLUENCE OF SILICA FUME ON THE PRODUCTION PROCESS AND PROPERTIES OF POROUS GLASS COMPOSITE. ChemChemTech, 66(1), 84-92. https://doi.org/10.6060/ivkkt.20236601.6607
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)