PHYSICO-CHEMICAL PROCESSES OF ALKALINE ACTIVATION OF SILICA DURING HEAT TREATMENT IN THE SIO2-NaOH-H2O SYSTEM
Abstract
The physicochemical processes during alkaline activation of the SiO2-NaOH-H2O system with crystalline silica have been investigated. The studies were carried out using thermogravimetric, X-ray phase analysis methods and IR spectroscopy data. Compositions with different silicate modulus (SiO2/Na2O 4-7), the amount of the introduced silica fume (10-30%) in substitution of marshalite and the concentration of sodium hydroxide solution (30-60 wt.%) are considered. According to the results of the study, the reactions of interaction of the components and a model of phase transformations in the composition when it is heated to 850 °C are proposed. At the stage of interaction of the components (30-130 °C), hydration processes occur with the formation of sodium hydrosilicate Na2SiO3(OH), with on the surface of which a layer of crystallohydrate water and a water layer to be formed without formation of free water. When the composition is heated to temperatures of 130-300 °С the water layer and then the crystallohydrate water are removed. The removed water interacts with unreacted silica and forms hydrated forms of silica. Upon further heating to temperatures of 310-800 °C, OH groups are removed from sodium hydrosilicates and hydrated forms of silica and it turns into anhydrous silicates. Heating the composition to 850 °C leads to the formation of a pyroplastic mass from a eutectic melt (Na2O·2SiO2–SiO2) and residual silica. The two-stage mechanism of formation of a porous frame is established at the stage of decomposition of sodium hydrosilicate crystallohydrates (80-200 °C) and at the stage of melt foaming at high temperatures (790-850 °C). Foaming occurs due to the removal of water vapor (80-200 °C) and the expansion of the volume of gases (790-850 °C) in the porous structure formed at the first stage of foaming. The developed compound of the high-modulus composition (SiO2/Na2O 5,7) is a basis to obtain a porous glass composite using a two-stage alkaline technology with the introduction of additional oxides that increase chemical resistance. The composition includes the following components, wt.%: marshalite – 50, silica fume – 23, sodium hydroxide – 16, water – 11.
For citation:
Skirdin K.V., Kazmina O.V., Vereshchagin V.I., Rymanova I.E. Physico-chemical processes of alkaline activation of silica during heat treatment in the SiO2-NaOH-H2O system. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 108-114. DOI: 10.6060/ivkkt.20246704.6947.
References
Goltsman B.M., Yatsenko L.A., Goltsman N.S. Production of foam glass materials from silicate raw materials by hydrate mechanism. Solid State Phenom. 2020. V. 299. P. 293-298. DOI: 10.4028/www.scientific.net/SSP.299.293.
Bajare D., Bumanis G., Korjakins А. New porous material made from industrial and municipal waste for building application. Constr. Mater. 2014. V. 20. N 3. P. 333-338. DOI: 10.5755/j01.ms.20.3.4330.
Simonsen M.E., Sønderby C., Søgaard E.G. Synthesis and characterization of silicate polymers. J. Sol-Gel Sci. Technol. 2009. V. 50. P. 372-382. DOI: 10.1007/s10971-009-1907-4.
Luukkonen T., Heponiemi A., Runtti H., Pesonen J., Yliniemi J., Lassi U. Application of alkali-activated mate-rials for water and wastewater treatment: a review. Rev. Environ. Sci. Biotechnol. 2019. V. 18. P. 271-297. DOI: 10.1007/ s11157-019-09494-0.
Manakova N.K., Suvorava O.V., Semushin V.V. Physi-cochemical substantiation of obtaining porous glass materials from silica-containing raw materials. Glass Phys. Chem. 2023. V. 49. N 2. P. 193-198. DOI: 10.1134/S108765962260106X.
Kutugin V.A., Lotov V.A., Gubanov A.V., Kursilev K.V. Porous articles with rigid structure based on natural amorphous silica. Glass Ceram. 2018. V. 75. N 1-2. P. 12-16. DOI: 10.1007/s10717-018-0019-4.
Reka A.A., Pavlovski B., Makreski P. New optimized method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth. Ceram. Int. 2017. V. 43. N 15. P. 12572-12578. DOI: 10.1016/j.ceramint.2017.06.132.
Makarov D.V., Manakova N.K., Suvorova O.V. Production of rock-based foam-glass materials (Review). Glass Ceram. 2023. V. 79. P. 411–417. DOI: 10.1007/s10717-023-00522-8.
Miryuk O.A. Influence of fillers on properties of liquid-glass compositions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 12. P. 51–56. DOI: 10.6060/ivkkt.20196212.5915.
Kazmina O.V., Dushkina M.A., Vereshchagin V.I., Voland S.N. The use of dispersed screenings of construction sands for the production of foam glass materials. Stroit. Mater. 2014. N 1-2. P. 93-97 (in Russian).
Volland S. Influence of the mechanical activation of raw mixes on the properties of foam glass from sand sludge. Constr. Building Mater. 2016. V. 125. N 30. P. 119-126. DOI: 10.1016/j.conbuildmat.2016.07.116.
Ivanov K.S. Influence of the methods of preparing a silicate-sodium mixture on the formation of the structure of foam glass ceramics. Glass Phys Chem. 2019. V. 45. P. 60-65. DOI: 10.1134/S1087659619010048.
Makarov D.V., Manakova N.K., Suvorova O.V. Produc-tion of rock-based foam-glass materials (review). Glass Ceram. 2023. V. 79. P. 411–417. DOI: 10.1007/s10717-023-00522-8.
Yatsenko E.A., Goltsman B.M., Klimova L.V., Yatsenko L.A. Peculiarities of foam glass synthesis from natural silica-containing raw materials. J. Therm. Anal. Calorim. 2020. V. 142. P. 119–127. DOI: 10.1007/s10973-020-10015-3.
Ivanov K.S. Preparation and properties of foam glass-ceramic from diatomite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2018. V. 33. P. 273–277. DOI: 10.1007/s11595-018-1817-8.
Da Silva R.C., Kubaski E.T., Tenório-Neto E.T., Lima-Tenório M.K., Tebcherani S.M. Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix. J. Non-Cryst. Solids. 2019. V. 511. P. 177-182. DOI: 10.1016/j.jnoncrysol.2019.02.003.
Skirdin K.V., Miskovets A. Yu., Kazmina O.V. Influence of silica fume on the production process and properties of porous glass composite. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 1. P. 84-92. DOI 10.6060/ivkkt.20236601.6607.
Kiselev A.V., Lygin V.I. Infrared spectra of surface compounds. M.: Nauka. 1972. 459 p.
Efimov A.M., Pogareva V.G. IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm−1 region. Chem. Geol. 2006. V. 229. N. 1–3. P. 198-217. DOI: 10.1016/j.chemgeo.2006.01.022.
Zhai C., Zhong Y., Zhang J., Wang M., Yu Y., Zhu Y. Enhancing the foaming effects and mechanical strength of foam glasses sintered at low temperatures. J. Phys. Chem. Solids. 2022. V. 165. N 110698. DOI: 10.1016/j.jpcs.2022.110698.