CONDUCTIVE POLYMER COMPOSITE MATERIALS BASED ON FURAN POLYIMINES FOR BIPOLAR FUEL CELL PLATES

  • Yash V. Kataria South Russian State Polytechnic University named after M.I. Platov
  • Victor A. Klushin South Russian State Polytechnic University named after M.I. Platov
  • Vera P. Kashparova South Russian State Polytechnic University named after M.I. Platov
  • Denis V. Tokarev South Russian State Polytechnic University named after M.I. Platov
  • Nina V. Smirnova South Russian State Polytechnic University named after M.I. Platov
Keywords: bipolar plates, conductive polymer composite, fuel cell, polyimines, 2,5-diformylfuran

Abstract

Conductive polymer composite materials for bipolar fuel cell plates with a polymer electrolyte membrane have been successfully prepared using 2,5-diformylfuran synthesized from plant biomass. The composites were prepared using a conductive filler (natural graphite) and polyimines from 2,5-diformylfuran and aromatic and aliphatic diamines (p-phenylenediamine, meta-toluenediamine, and hexamethylenediamine). The effect of polyimine content and its type on the electrically conductive and strength properties of materials has been studied. It is shown that the electrical conductivity of the composite increases with a decrease in the content of the polymer binder, while its mechanical properties change in the reverse order. The best materials were made using polyimine based on 2,5-diformylfuran and meta-toluenediamine (MTDA). The lowest value of interfacial contact resistance (0.01 Ohm·cm2) was shown by composites with 45% vol. binder content, and the highest mechanical strength (compressive and bending 21.8 and 32 MPa, respectively), containing 85% vol. polyimine. Sample MTDA-75 has demonstrated an optimal combination of electrical conductivity and mechanical properties. The interfacial contact resistance of the composite was 0.04 Ohm·cm2, and the strength was 15 and 22.5 MPa for compression and bending, respectively. Thus, composites based on polyimines from 2,5-diformylfuran and various diamines and natural graphite as an electrically conductive filler demonstrate great potential for the production of bipolar fuel cell plates with a polymer electrolyte membrane, and correspond to the strategic direction for the development of materials with minimal carbon footprint.

For citation:

Kataria Y.V., Klushin V.A., Kashparova V.P., Tokarev D.V., Smirnova N.V. Conductive polymer composite materials based on furan polyimines for bipolar fuel cell plates. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 3. P. 93-99. DOI: 10.6060/ivkkt.20236603.6766.

References

Jiao K., Xuan J., Du Q., Bao Z., Xie B., Wang B., Guiver M.D. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021. V. 595. N 7867. P. 361-369. DOI: 10.1038/s41586-021-03482-7.

Nguyen H.L., Han J., Nguyen X.L., Yu S., Goo Y.M., Le D.D. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: main influencing parameters and testing protocols. Energies. 2021. V. 14. N 13. P. 40-48. DOI: 10.3390/en14134048.

Wlodarczyk R. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells—A review. Funct. Mater. Lett. 2019. V. 12. N 02. P. 1930001-1930009. DOI: 10.1142/S1793604719300019.

Kang K., Park S., Jo A., Lee K., Ju H. Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites. Int. J. Hydrogen En. 2017. V. 42. N 3. P. 1691-1697. DOI: 10.1016/j.ijhydene.2016.05.027.

Radzuan N.A.M., Zakaria M.Y., Sulong A.B., Sahari J. The effect of milled carbon fibre filler on electrical con-ductivity in highly conductive polymer composites. Compos. Pt. B: Eng. 2017. V. 110. P. 153-160. DOI: 10.1016/j.compositesb.2016.11.021.

Zhu J. Carbon black-reinforced 3D and 4D printable conductive polymer composites. In: 3D and 4D Printing of Polymer Nanocomposite Materials. Elsevier. 2020. P. 367-385. DOI: 10.1016/B978-0-12-816805-9.00012-0.

Prasanna D., Selvaraj V. Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications. J. Colloid Interface Sci. 2016. V. 472. P. 116-125. DOI: 10.1016/j.jcis.2016.03.032.

Flandin L., Chang A., Nazarenko S., Hiltner A., Baer E. Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers. J. Appl. Polym. Sci. 2000. V. 76. N 6. P. 894-905. DOI: 10.1002/(SICI)1097-4628(20000509)76:6<3894::AID-APP16>3.0.CO;2-K.

Taherian R. Retraction notice to: A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. J. Power Sources. 2014. N 265 (1). P. 370-390. DOI: 10.1016/j.jpowsour.2020.229239.

Mukherjee A., Dumont M.J., Raghavan V. Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenergy. 2015. V. 72. P. 143-183. DOI: 10.1016/j.biombioe.2014.11.007.

Kashparova V.P., Chernysheva D.V., Klushin V.A., Andreeva V.E., Kravchenko O.A., Smirnova N.V. Fu-ran monomers and polymers from renewable plant bio-mass. Usp. Khim. 2021. V. 90. N 6. P. 750 (in Russian). DOI: 10.1070/RCR5018.

Rout P.K., Nannaware A.D., Prakash O., Kalra A., Rajasekharan R. Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising bio-chemical and biofuel feedstock. Chem. Eng. Sci. 2016. V. 142. P. 318-346. DOI: 10.1016/j.ces.2015.12.002.

Kashparova V.P., Shubina E.N., Zhukova I.Yu., Ilchi-baeva I.B., Smirnova N.V., Kagan E.Sh. Promoting ef-fect of pyridine bases on indirect electrochemical oxida-tion of alcohols. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 9. P. 33-39. DOI: 10.6060/ivkkt.20196209.5923.

Klushin V.A., Galkin K.I., Kashparova V.P., Krivo-daeva E.A., Kravchenko O.A., Smirnova N.V., Cher-nyshev V.M., Ananikov V.P. Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical. Russ. J. Org. Chem. 2016. V. 52. N 6. P. 767-771. DOI: 10.1134/S1070428016060014.

Yao K., Adams D., Hao A., Zheng J.P., Liang Z., Nguyen N. Highly conductive and strong graphite-phenolic resin composite for bipolar plate applications. Energy Fuels. 2017. V 31. N 12. P. 14320-14331. DOI: 10.1021/acs.energyfuels.7b02678.

Kashparova V.P., Klushin V.A., Leontyeva D.V., Smirnova N.V., Chernyshev V.M., Ananikov V.P. Selective synthesis of 2, 5‐diformylfuran by sustainable 4‐acetamido‐TEMPO/halogen‐mediated electrooxidation of 5‐hydroxymethylfurfural. Chem. Asian J. 2016. V. 11. N 18. P 2578-2585. DOI: 10.1002/asia.201600801.

Lee S.B., Cho K.H., Lee W.G., Jang H. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment. J. Power Sources. 2009. V. 187. N 2. P. 318-323. DOI: 10.1016/j.jpowsour.2008.11.064.

Kuan Y.D., Ciou C.W., Shen M.Y., Wang C.K., Fitriani R.Z., Lee C.Y. Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells. Int. J. Hydrogen En. 2021. V 46. N 31 P. 16801-16814. DOI: 10.1016/j.ijhydene.2020.08.030.

Yin Q., Li A.J., Wang W.Q., Xia L.G., Wang Y.M. Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate. J. Power Sources. 2007. V. 165. N 2. P. 717-721. DOI: 10.1016/j.jpowsour.2006.12.019.

Faddeev N., Klushin V., Tokarev D., Smirnova N.V. Bio-Based Conductive Polymer Composite Materials for Fuel Cells Bipolar Plates. Key Eng. Mater. 2020. V. 869. P. 591-596. DOI: 10.4028/www.scientific.net/KEM.869.591.

Ardanuy M., Rodríguez-Perez M.A., Algaba I. Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Compos. Pt. B: Eng. 2011. V. 42. N 4. P. 675-681. DOI: 10.1016/j.compositesb.2011.02.006.

Published
2023-02-08
How to Cite
Kataria, Y. V., Klushin, V. A., Kashparova, V. P., Tokarev, D. V., & Smirnova, N. V. (2023). CONDUCTIVE POLYMER COMPOSITE MATERIALS BASED ON FURAN POLYIMINES FOR BIPOLAR FUEL CELL PLATES. ChemChemTech, 66(3), 93-99. https://doi.org/10.6060/ivkkt.20236603.6766
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)