THERMODYNAMICS OF INTERMOLECULAR INTERACTION REACTIONS OF BIOMOLECULES IN WATER AND WATER-ORGANIC SOLVENTS
Abstract
The paper summarizes the results of our own research into the formation of molecular complexes of cyclodextrins with biologically active polyphenol compounds in water-organic solvents, chemical equilibria in the solutions of hydrazones and Schiff bases and their metal complexes in the solutions of DNA and proteins. It was found that an increase in the content of the non-aqueous component in the binary solvent leads to a decrease in the stability of molecular complexes of cyclodextrins with polyphenols and a decrease in the exothermicity of their formation reactions. It has been shown that metal complexes in an aqueous buffer solution containing also DNA or protein dissociate, and the released cation and free ligand bind to the biomolecule.
For citation:
Usacheva T.R., Gamov G.A., Kuranova N.N., Zavalishin M.N., Kabirov D.N., Alister D.A., Grazhdan K.V., Gushchina A.S., Isaeva V.A., Kashina O.V., Kuzmina I.A., Tukumova N.V., Sharnin V.A. Thermodynamics of intermolecular interaction reactions of biomolecules in water and water-organic solvents. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 7. P. 59-75. DOI: 10.6060/ivkkt.20236607. 6842j.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References
Koifman O.I., Ganyushkina V.V., Malyasova A.S. Scientific Schools of Ivanovo Chemtech: Through the Prism of History. Ivanovo: IGKhTU. 2020. 496 p. (in Russian).
Sharnin V.A., Usacheva T.R., Kuz’mina I.A., Gamov G.G., Aleksandriiskii V.V. Complex formation in non-aqueous media: A solvation approach to describing the role of the solvent. M.: Lenand. 2020. 496 p. (in Russian).
Usacheva T.R., Kabirov D.N., Beregova D.A., Gamov G.A., Sharnin V.A., Biondi M., D’Aria F., Giancola C. // J. Therm. Anal. Calorim. 2019. V. 138. P. 417–424. DOI: 10.1007/s10973-019-08136-5.
Usacheva T.R., Kabirov D.N., Alister D.A., Zavalishin M.N., Gamov G.A., Pham Thi L., Vu Xuan M. Nguyen Tuan D. // Izv. Akad. Nauk. Ser. Khim. 2020. V. 69. N 9. P. 1692–1696 (in Russian). DOI: 10.1007/s11172-020-2949-6.
Kuranova N.N., Kabirov D.N., Kashina O.V., Pham Thi Lan, Usacheva T.R. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 10. P. 23-29 (in Russian). DOI: 10.6060/ivkkt.20206310.6285.
Kuzmina I.A., Volkova M.A., Marov A.S., Usacheva T.R., Pham Thi Lan. // Russ. J. Phys. Chem. A. 2020. V. 94. N 10. P. 2034-2037. DOI: 10.31857/S0044453720100180.
Pham L., Usacheva T.R., Kuz’mina I.A., Nguyen T., Thai H., Kovanova M.A., Le H., Nguyen D., Volynkin V., Tran D. // J. Mol. Liq. 2020. V. 318. N 114308. DOI: 10.1016/j.molliq.2020.114308.
Usacheva T.R., Pham T.L., Nguyen T.D., Kabirov D.N., Alister DA., Vu X.M., Le T.M.H., Sharnin V., Giancola C. // J. Therm. Anal. Calorim. 2020. V. 142. N 5. P. 2015–2024. DOI: 10.1007/s10973-020-09807-4.
Kabirov D., Silvestri T., Niccoli M., Usacheva T., Mayol L., Biondi M., Giancola C. // J. Therm. Anal. Calorim. 2022. V. 147. N 1. P. 347–353. DOI: 10.1007/s10973-020-10381-y.
Kuranova N.N., Usacheva T.R., Gushchina A.S., Alistair D.A., Kabirov D.N., Pham Thi L. // Russ. J. Phys. Chem. A. 2021. V. 95. N 9. P. 1821-1825. DOI: 10.31857/S0044453721090107.
Usacheva T.R., Volynkin V.A., Panyushkin V.T., Lindt D.A., Pham T.L., Nguyen T.T.H., Le T.M.H., Alister D.A., Kabirov, D.N., Kuranova N.N., Gamov G.A., Kushnir R.A. Biondi M, Giancola C., Sharnin V.A. // Molecules. 2021. V. 26. N 15. P. 4408. DOI: 10.3390/molecules26154408.
Kuranova N.N., Usacheva T.R., Alister D.A., Kushnir R.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 10. P. 77-85. DOI: 10.6060/ivkkt.20226510.6697.
Usacheva T., Terekhova I, Alister D., Agafonov M, Kuranova N., Tyurin D, Sharnin V.A. // Entropy. 2022. V. 24. N 1. P. 24. DOI: 10.3390/e24010024.
Gamov G.A., Kiselev A.N., Murekhina A.E., Zavalishin M.N., Aleksandriiskii V.V., Kosterin D.Yu. // J. Mol. Liq. 2021. V. 341. P. 116911. DOI: 10.1016/j.molliq.2021.116911.
Gamov G.A., Zavalishin M.N., Petrova M.V., Khokhlova A.Yu., Gashnikova A.V., Kiselev A.N., Sharnin V.A. // Phys. Chem. Liq. 2021. V. 59. N 5. P. 666–678. DOI: 10.1080/00319104.2020.1774878.
Gamov G.A., Zavalishin M.N., Usacheva T.R., Sharnin V.A. // Russ. J. Phys. Chem. A. 2017. V. 91. N 5. P. 843-849. DOI: 10.7868/S0044453717050119.
Gamov G.A., Aleksandriiskii V.V., Zavalishin M.N., Khokhlova A.Y., Sharnin V.A. // Russ. J. General Chem. 2017. V. 87. N 6. P. 1161-1166. DOI: 10.1134/S1070363217060093.
Gamov G.A., Kiselev A.N., Aleksandriiskii V.V., Sharnin V.A. // J. Mol. Liq. 2017. V. 242. P. 1148–1155. DOI: 10.1016/j.molliq.2017.07.106.
Gamov G.A., Khodov I.A., Belov K.V., Zavalishin M.N., Kiselev A.N., Usacheva T.R., Sharnin V.A. // J. Mol. Liq. 2019. V. 283. P. 825–833. DOI: 10.1016/j.molliq.2019.03.125.
Gamov G.A., Zavalishin M.N., Kabi-rov D.N., Usacheva T.R., Sharnin V.A. // Russ. J. Physical Chem. A. 2019. V. 93. N 2. P. 192-197. DOI: 10.1134/S0044453719020122.
Gamov G.A., Kiselev A.N., Zavalishin M.N., Yarullin D.N. // J. Mol. Liq. 2023. V. 369. P. 120961. DOI: 10.1016/j.molliq.2022.120961.
Gamov G.A., Zavalishin M.N., Khokhlova A.Y., Gashnikova A.V., Aleksandriiskii V.V., Sharnin V.A. // J. Coord. Chem. 2018. V. 71. N 20. P. 3304–3314. DOI: 10.1080/00958972.2018.1512708.
Gamov G.A., Zavalish-in M.N., Khokhlova A.Y., Gashnikova A.V., Sharnin V.A. // Russ. J. General Chem. 2018. V. 88. N 7. P. 1436-1440. DOI: 10.1134/S0044460X18070144.
Zavalishin M.N., Gamov G.A., Khokhlova A.Y., Gashnikova A.V., Sharnin V.A. // Russ. J. Inorg. Chem. 2020. V. 65. N 1. P. 119-125. DOI: 10.31857/S0044457X20010201.
Gamov G.A., Zavalishin M.N. // Russ. J. Inorg. Chem. 2021. V. 66. N 10. P. 1561-1568. DOI: 10.31857/S0044457X21100056.
Kuranova N.N., Yarullin D.N., Zavalishin M.N., Gamov G.A. // Molecules. 2022. V. 27. N 21. P. 7346. DOI: 10.3390/molecules27217346.
Zavalishin M.N., Gamov G.A., Pimenov O.A., Pogonin A.E., Aleksandriiskii V.V., Usoltsev S.D., Marfin Yu.S. // J. Photochem. Photobiol. A. 2022. V. 432. P. 114112. DOI: 10.1016/j.jphotochem.2022.114112.
Gamov G.A., Meshkov A.N., Zavalishin M.N., Khokhlo-va A.Yu., Gashnikova A.V., Aleksandriiskii V.V., Sharnin V.A. // J. Mol. Liq. 2020. V. 305. P. 112822. DOI: 10.1016/j.molliq.2020.112822.
Rozanov E.S., Grazhdan K.V., Gamov G.A., Kiselev A.N. // Russ. J. Phys. Chem. A. 2022. V. 96. N 4. P. 808-812. DOI: 10.31857/S0044453722040264.
Gamov G.A., Meshkov A.N., Zavalishin M.N., Petrova M.V., Khokhlova A.Yu., Gashnikova A.V., Sharnin V.A. // Spectrochim. Acta A: Mol. Biomol. Spec. 2020. V. 233. P. 118165. DOI: 10.1016/j.saa.2020.118165.
Pogonin A.E., Gamov G.A., Zavalishin M.N., Sharnin V.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. P. 101–107. DOI: 10.6060/ivkkt.20186112.5846.
Khodov I.A., Belov K.V., Pogonin A.E., Savenkova M.A., Gamov G.A. // J. Mol. Liq. 2021. V. 342. P. 117372. DOI: 10.1016/j.molliq.2021.117372.
Gamov G.A., Zavalishin M.N., Aleksandriyskii V.V., Sharnin V.A. // Zhurn.Obshch. Khim. 2019. V. 89. N 2. P. 230-235 (in Russian). DOI: 10.1134/S0044460X19020100.
Gamov G.A. // Spectrochim. Acta A: Mol. Biomol. Spec. 2021. V. 249. P. 119334. DOI: 10.1016/j.saa.2020.119334.
Gamov G.A., Zavalishin M.N., Sharnin V.A. // Spectro-chim. Acta A: Mol. Biomol. Spec. 2019. V. 206. P. 160–164. DOI: 10.1016/j.saa.2018.08.009.
Yarullin D.N., Zavalishin M.N., Sharnin V.A., Gamov G.A. // Russ. J. Phys. Chem. A. 2022. V. 96. N 6. P. 1190-1194. DOI: 10.31857/S0044453722060322.
D’Aria F., Pagano B., Giancola C. // J. Therm. Anal. Calorim. 2022. V. 147. N 8. P. 4889–4897. DOI: 10.1007/s10973-021-10958-1.
Milman P.YU., Gilvanova E.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. V. 65. N 1. P. 76-82 (in Russian). DOI: 10.6060/ivkkt.20226501.6424.
Loftsson T., Duchêne D. // Int. J. Pharm. 2007. V. 329. N 1. P. 1–11. DOI: 10.1016/j.ijpharm.2006.10.044.
Muankaew C., Loftsson T. // Basic Clin. Physiol. Pharmacol. 2018. V. 122. N 1. P. 46–55. DOI: 10.1111/bcpt.12917.
Ipatova O.M., Torkhovskaya T.I., Medvedeva N.V., Prozorovsky V.N., Ivanova N.D., Shironin A.V., Baranova V.S., Archakov A.I. // Biochem. (Moscow), Suppl. Ser. B: Biomed. Chem. 2010. V. 4. N 1. P. 82-94. DOI: 10.18097/PBMC20105601101
Jansook P., Loftsson T. // Int. J. Pharm. 2022. V. 618. P. 121654. DOI: 10.1016/j.ijpharm.2022.121654.
Agafonov M.A., Delyagina E.S., Terekhova I.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 4. P. 47-55 (in Russian). DOI: 10.6060/ivkkt.20226504.6539ю.
Kim S.K, Yun C-H., Han S.H. // Front. Immunol. 2016. V. 7. P. 435. DOI: 10.3389/fimmu.2016.00435.
Jansook P., Ogawa N., Loftsson T. // Int. J. Pharm. 2018. V. 535. N 1. P. 272–284. DOI: 10.1016/j.ijpharm.2017.11.018.
Kukushkin Yu.N. // Russ. J. Coord. Chem. 1997. V. 23. N 3. P. 149–59.
Mashkovsky M.D. Medicines. M.: Novaya volna. 2002. 540 p. (in Russian).
Méndez S.G., Otero Espinar F.J., Alvarez A.L., Longhi M.R., Quevedo M.A., Zoppi A. // J. Incl. Phenom. Mac-rocycl. Chem. 2016. V. 85. N 1. P. 33–48. DOI: 10.1007/s10847-016-0603-6.
Burda S., Oleszek W. // J. Agric. Food. Chem. 2001. V. 49. N 6. P. 2774–2779. DOI: 10.1021/jf001413m.
Routine. Properties, features, scope of application. https://biopax.ru/articles/rutin/ (accessed 1 Mar 2023).
Terekhova I. // Thermochim. Acta. 2011. V. 526. P. 118–121. DOI: 10.1016/j.tca.2011.09.003.
Terekhova I., Koźbiał M., Kumeev R., Gierycz P. // Chem. Phys. Lett. 2011. V. 514. P. 341–346. DOI: 10.1016/j.cplett.2011.08.074.
Krestov G.A., Novosyolov N.P., Perelygin I.S. Ionic Solvation (Ellis Horwood Series in inorganic chemis-try). New-York-London- Toronto- Sydney-Tokyo-Singapore: Prentice Hall. 1994.
Hu X-G., Lin R-S. // Acta Phys.-Chim. Sinica. 1999. V. 15. N 9. P. 838–844. DOI: 10.3866/PKU.WHXB19990913.
Usacheva T.R., Pham Thi L., Kuzmina K.I., Sharnin V.A. // J. Therm. Anal. Calorim. 2017. V. 130. N 1. P. 471–478. DOI: 10.1007/s10973-017-6207-6.
Belica S., Sadowska M., Stępniak A., Graca A., Pałecz B. // J. Chem. Thermodyn. 2014. V. 69. P. 112–117. DOI: 10.1016/j.jct.2013.10.004.
Chebotarev A.N., Snigur D.V. // J. Analyt. Chem. 2015. V. 70. N 1. P. 55-59. DOI: 10.7868/S0044450215010077.
D’Aria F., Serri C., Niccoli M., Mayol L., Quagliariello V., Iaffaioli R.V., Biondi M., Giancola C. // J. Therm. Anal. Calorim. 2017. V. 130. N 1. P. 451–456. DOI: 10.1007/s10973-017-6135-5.
Liu M., Dong L., Chen A., Zheng Y., Sun D., Wang X., Wang B. // Spectrochim. Acta A: Mol. Biomol. Spec. 2013. V. 115. P. 854–860. DOI: 10.1016/j.saa.2013.07.008.
Razmara R.S, Daneshfar A., Sahraei R. // J. Chem. Eng. Data. 2010. V. 55. N 9. P. 3934–3936. DOI: 10.1021/je9010757.
Miyake K., Arima H., Hirayama F., Yamamoto M., Horikawa T., Sumiyoshi H. Noda S., Uekama K. // Pharm. Dev. Technol. 2000. V. 5. N 3. P. 399–407. DOI: 10.1081/PDT-100100556.
Nguyen T.A., Liu B., Zhao J., Thomas D.S., Hook J.M. // Food. Chem. 2013. V. 136. N 1. P. 186–192. DOI: 10.1016/j.foodchem.2012.07.104.
Savic I.M., Savic-Gajic I.M., Nikolic V.D., Nikolic L.B., Radovanovic B.C., Milenkovic-Andjelkovic A. // J. Incl. Phenom. Macrocycl. Chem. 2016. V. 86. N 1. P. 33–43. DOI: 10.1007/s10847-016-0638-8.
Starikov E.B., Nordén B. // Chem. Phys. Lett. 2012. V. 538. P. 118–120. DOI: 10.1016/j.cplett.2012.04.028.
Meloun M., Ferenčíková Z. // Fluid Ph. Equilibria. 2012. V. 328. P. 31–41. DOI: 10.1016/j.fluid.2012.05.011.
Ferrante A., Gorski J. // J. Mol. Biol. 2012. V. 417. N 5. P. 454–467. DOI: 10.1016/j.jmb.2012.01.057.
Exner O. // Chem Commun. 2000. N 17. P. 1655–1656. DOI: 10.1039/B002758H.
Chatjigakis A.K., Donze C., Coleman A.W., Cardot P. // Anal. Chem. 1992. V. 64. N 16. P. 1632–1634. DOI: 10.1021/ac00038a022.
Pralhad T., Rajendrakumar K. // J. Pharm. Biomed. Analysis. 2004. V. 34. N 2. P. 333–339. DOI: 10.1016/S0731-7085(03)00529-6.
Yadav V.R., Suresh S., Devi K., Yadav S. // AAPS PharmSciTech. 2009. V. 10. N 3. P. 752–762. DOI: 10.1208/s12249-009-9264-8.
Hegge A.B., Másson M., Kristensen S., Tønnesen H.H. // Int. J. Pharm. 2009. V. 64. N 6. P. 382–389. DOI: 10.1691/ph.2009.8380.
Tonnesen H.H., Karlsen J. // Z. Lebensm. Unters. Forsch. 1985. V. 180. P. 402–404. DOI: 10.1007/BF01027775.
Carron MC. // issued 6 December 1966, assigned to Laboratories Robert et Carriere SA.
Begovic B., Ahmetagic S., Calkic L., Vehabovic M., Kovacevic S., Catic T., Mehic M. // Mater. Sociomed. 2016. V. 28. N 6. P. 454–458. DOI: 10.5455/msm.2016.28.454-458.
Karlowicz-Bodalska K., Głowacka K., Boszkiewicz K., Han S., Wiela-Hojeńska A. // Acta Polon. Pharm. 2019. P. 76. N 4. P. 745–751. DOI: 10.32383/appdr/105805.
Fernandes M.B, Gonçalves J.E, Tavares L.C, Storpirtis S. // Drug Devel. Ind. Pharm. 2015. V. 41. N 7. P. 1066–1072. DOI: 10.3109/03639045.2014.925919.
Covaci O-I., Mitran R-A., Buhalteanu L., Dumitrescu D.G., Shova S., Manta C-M. // Cryst. Eng. Comm. 2017. V. 19. N 26. P. 3584–3591. DOI: 10.1039/C7CE00303J.
Ledenkov S.F., Sharnin V.A., Isaeva V.A. // Zhurn. Fiz. Khim. 1995. V. 69. N 6. P. 994-996 (in Russian).
Heller S.T., Silverstein T.P. // Chem. Texs. 2020. V. 6. N 2. P. 15. DOI: 10.1007/s40828-020-00112-z.
Kim H-S., Chung T.D, Kim H. // J. Electroanal. Chem. 2001. V. 498. N 1-2. P. 209–215. DOI: 10.1016/S0022-0728(00)00413-7.
Mukerjee P., Ostrow J.D. // Tetrahedron. Lett. 1998. V. 39. N 5-6. P. 423–426. DOI: 10.1016/S0040-4039(97)10537-8.
Baughman E.H., Kreevoy M.M. // J. Phys. Chem. 1974. V. 78. N 4. P. 421–423. DOI: 10.1021/j100597a021.
Azab H.A., Ahmed I.T., Mahmoud M.R. // J. Chem. Eng. Data. 1995. V. 40. N 2. P. 523–525. DOI: 10.1021/je00018a038.
Mchedlov-Petrossyan N.O., Mayorga R.S. // J. Chem. Soc., Faraday Trans. 1992. V. 88. N 20. P. 3025–3032. DOI: 10.1039/FT9928803025.
Halle J.C., Gaboriaud R., Schaal R. // Bull. Chem. Soc. Fr. 1970. P. 2047.
Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. V. 100. N 3. P. 819–852. DOI: 10.1021/cr980144k.
Raboni S., Spyrakis F., Campanini B., Amadasi A., Bettati S., Peracchi A., Mozzarelli A., Contestabile R. // Comprehen. Nat. Prod. II. 2010. V. 7. P. 273–350. DOI: 10.1016/B978-008045382-8.00140-4.
Hazra A., Chatterjee A., Chatterjee D., Hilmey D.G., Sanders J.M., Hanes J.W., Krishnamoorthy K., McCulloch K.M., Waitner M.J., O’Leary, S., Begley T., Snider M.J. // Encycl. of Microbiol. 2009. P. 79–88. DOI: 10.1016/B978-012373944-5.00069-9.
Barannikov V.P., Venediktov E.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 7. Р. 33–38. DOI: 10.6060/ivkkt.20216407.6417.
Ueland P.M., Ulvik A., Rios-Avila L., Midttun Ø., Greg-ory J.F. // Annu. Rev. Nutr. 2015. V. 35. P. 33–70. DOI: 10.1146/annurev-nutr-071714-034330.
Paiardini A., Contestabile R., Buckle A.M., Cellini B. // BioMed. Res. Int. 2014. V. 2014. N 1-2. P. 856076. DOI: 10.1155/2014/856076.
Richardson D.R., Tran E.H., Ponka P. // Blood. 1995. V. 86. N 11. P. 4295–4306. DOI: 10.1182/blood.V86.11.4295. bloodjournal86114295.
Hermes‐Lima M., Gonçalves M.S., Andrade Jr. R.G. // Mol. Cell. Biochem. 2001. V. 228. N 1/2. P. 73–82. DOI: 10.1023/A:1013348005312.
Szuber N., Buss J.L., Soe-Lin S., Felfly H., Trudel M., Ponka P. // Exp. Hematol. 2008. V. 36. N 7. P. 773–785. DOI: 10.1016/j.exphem.2008.01.006.
Buss J.L., Neuzil J., Gellert N., Weber C., Ponka P. // Biochem. Pharmacol. 2003. V. 65. N 2. P. 161–172. DOI: 10.1016/S0006-2952(02)01512-5.
Brewer C.T., Yang L., Edwards A., Lu Y., Low J., Wu J., Lee R.E., Chen T. // Toxicol. Sci. 2019. V. 168. N 1. P. 209–224. DOI: 10.1093/toxsci/kfy294.
Das C., Pakhira B., Rheingold A.L., Kumar Chattopadhyay S. // Inorganica Chim. Acta. 2018. V. 482. P. 292–298. DOI: 10.1016/j.ica.2018.06.017.
Upadhyay Y., Anand T., Babu L.T., Paira P., Crisponi G., Ashok Kumar A.K., Sahoo S.K. // Dalton Trans. 2018. V. 47. N 3. P. 742–749. DOI: 10.1039/C7DT04234E.
Upadhyay Y., Paira P., Ashok Kumar S.K., Choi H-J., Kumar R., Sahoo S.K. // Inorganica Chim. Acta. 2019. V. 489. P. 198–203. DOI: 10.1016/j.ica.2019.02.028.
Anand T., Ashok Kumar S.K., Sahoo S.K. // Chem. Se-lect. 2017. V. 2. N 25. P. 7570–7579. DOI: 10.1002/slct.201701024.
Li X., Wen Q., Gu J., Liu W., Wang Q., Zhou G. // J. Mol. Liq. 2020. V. 319. P. 114124. DOI: 10.1016/j.molliq.2020.114124.
Li F., Zhong K., Hou S., Tang L., Bian Y. // Tetrahed. Lett. 2020. V. 61. N 10. P. 151558. DOI: 10.1016/j.tetlet.2019.151558.
Manallack D.T. // Perspect. Medicin. Chem. 2007. V. 1. Р. 25-38. DOI: 10.1177/1177391X0700100003.
Palanimurugan A., Kulandaisamy A. // J. Organomet. Chem. 2018. V. 861. P. 263–274. DOI: 10.1016/j.jorgan-chem.2018.02.051.
Neelakantan M.A., Balamurugan K., Balakrishnan C., Subha L. // Appl. Organometal. Chem. 2018. V. 32. N 4. P. e4259. DOI: 10.1002/aoc.4259.
Kalaiarasi G., Rajkumar S.R.J., Dharani S., Lynch V.M., Prabhakaran R. // Inorg. Chim. Acta. 2018. V. 471. P. 759–776. DOI: 10.1016/j.ica.2017.12.008.
Zehra S., Shavez Khan M., Ahmad I., Arjmand F. // J. Biomol. Struct. Dyn. 2019. V. 37. N 7. P. 1863–1879. DOI: 10.1080/07391102.2018.1467794.
Ganeshpandian M., Palaniandavar M., Muruganantham A., Ghosh S.K., Riyasdeen A., Akbarsha M.A. // Appl. Organometal. Chem. 2018 V. 32. N 3. P. e4154. DOI: 10.1002/aoc.4154.
Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200–205. DOI: 10.1016/j.talanta.2019.01.107.
Gamov G.A., Zavalishin M.N., Pimenov O.A., Klochkov V.V., Khodov I.A. // Inorg. Chem. 2020. V. 59. N 23. P. 17783–17793. DOI: 10.1021/acs.inorgchem.0c03082.