DEVELOPMENT OF A BIMETALLIC BATCH SENSOR FOR MONITORING STEEL CORROSION IN REINFORCED CONCRETE STRUCTURES
Abstract
A bimetallic batch sensor has been proposed to model the corrosion of steel reinforcement in concrete, caused by galvanic microcouples, in the presence of chlorides. Three metal pairs, namely low-carbon steel/copper, low-carbon steel/nickel, and low-carbon steel/silver were analyzed. The highest sensitivity was obtained for the low-carbon steel/silver pair. However, taking into account the availability of materials (cost), the low-carbon steel/copper pair was adopted as the optimal solution with the prospect of mass production of sensors. The impact of the thickness of the metal and dielectric plates, ranging from 0.1 to 5 mm, on the sensor sensitivity has been investigated. The highest sensor sensitivity was observed when the thickness of the metal and dielectric plates was between 0.1 and 0.2 mm. Using thinner plates, such as foil, increases the risk of short-circuiting and sensor failure during preparation. A sensor composed of ten pairs of plates was evaluated in a water extract from concrete in the presence of chlorides. The threshold concentration of chloride ions, which initiates an active-passive transition, was found to be ≥0.1 mol/dm3. With a further increase in chloride ion concentration, the current density on the sensor increased. The current density on the sensor, corresponding to the passive state, was 8.6 μA/cm2 with an electrolyte thickness above the surface of 20 mm. At the highest chloride concentration studied 1.00 mol/dm3, the excess of the current density on the sensor relative to the passive state reached 5.3 times. With an increase in the concentration of chlorides, the potential of the sensor plates in the measurement state (in the closed state through the electrolyte) shifted to the region of more negative values. The obtained results are consistent with data on corrosion rate evaluation using the method of polarization resistance. The bimetallic batch sensor has the potential for use in creating monitoring systems for the corrosion of steel reinforcement in concrete in the presence of chloride ions.
For citation:
Cao Nhat Linh, Shevtsov D.S., Nguyen Van Chi, Nong Quoc Quang, Nguyen Van Hoa, Zyablov A.N., Zartsyn I.D. Development of a bimetallic batch sensor for monitoring steel corrosion in reinforced concrete structures. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 8. P. 121-128. DOI: 10.6060/ivkkt.20236608.6881.
References
Bikul’chus G. // Protect. Metals. 2005. V. 41. N 5. P. 484-486. DOI: 10.1007/s11124-005-0070-8.
James A., Bazarchi E., Chiniforush A.A., Aghdam P.P., Hosseini M.R., Akbarnezhad A., Martek I., Ghodoosi F. // Construct. Build. Mater. 2019. V. 224. P. 1026-1039. DOI: 10.1016/j.conbuildmat.2019.07.250.
Tran N.L., Phan V.P., Valeriy M. // Architect. and Eng. 2021. V. 6. N 2. P. 37-44. DOI: 10.23968/2500-0055-2021-6-2-37-44.
Guo A., Li H., Ba X., Guan X., Li H. // Eng. Struct. 2015. V. 105. P. 1-11. DOI: 10.1016/j.engstruct.2015.09.031.
Cao Nhat Linh, Nguyen Van Chi, Dong Van Kien, Le Hong Quan, Nong Quoc Quang, Nguyen Duc Anh, Nguyen Thi Hong Xanh, Zyablov A.N. // Butlerov Commun. A. 2021. V. 2. N 3. Id. 19. DOI: 10.37952/ROI-jbc-A/21-2-3-19.
Borah M.M., Dey A., Sil A. // Structures. 2020. V. 23. P. 191-203. DOI: 10.1016/j.istruc.2019.09.020.
Osterminski K., Schießl P. // Struct. Concrete. 2012. V. 13. N 3. P. 156-165. DOI: 10.1002/suco.201200003.
Kirilenko A.M. Diagnostics of reinforced concrete structures. M.: Arkhitektura-C. 2013. 368 p. (in Russian).
Romano P., Brito P.S., Rodrigues L. // Construct. and Build. Mater. 2013. V. 47. P. 827-832. DOI: 10.1016/j.conbuildmat.2013.05.042.
Fan L., Shi X. // Struct. Health Monitoring. 2022. V. 21. N 4. P. 1879-1905. DOI: 10.1177/14759217211030911.
Cao Nhat Linh, Nguyen Van Chi, Nong Quoc Quang, Dong Van Kien, Le Hong Quan, Zyablov A.N., Minen-kova I.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 6. P. 6-11. DOI: 10.6060/ivkkt.20226506.6520.
Andrade C., Maribona I.R., Feliu S., González J.A., Feliu Jr S. // Corrosion Sci. 1992. V. 33. N 2. P. 237-249. DOI: 10.1016/0010-938X(92)90148-V.
Zartsyn I.D., Shevtsov D.S. // Korroziya: Materialy, Zashchita. 2018. N 2. P. 31-40 (in Russian).
Chen L., Su R.K.L. // Construct. and Build. Mater. 2021. V. 267. 121003. DOI: 10.1016/j.conbuildmat.2020.121003.
Shevtsov D.S., Zartsyn I.D., Komarova E.S. // Cement Concr. Compos. 2021. V. 119. 104026. DOI: 10.1016/j.cemconcomp.2021.104026.
Hornbostel K., Angst U.M., Elsener B., Larsen C.K., Geiker M.R. // Cement Concr. Compos. 2015. V. 76. P. 147-158. DOI: 10.1016/j.cemconres.2015.05.023.
Shevtsov D.S., Zartsyn I.D., Komarova E.S. // Protect. Metals Phys. Chem. Surfaces. 2021. V. 57. P. 1388-1394. DOI: 10.1134/S2070205121070182.
Lliso-Ferrando J.R., Gasch I., Martínez-Ibernón A., Valcuende M. // Ocean Eng. 2022. V. 257. 111680. DOI: 10.1016/j.oceaneng.2022.111680.
Kovalyuk E.N., Matvienko M.A. // Korroziya: Materi-aly, Zashchita. 2013. N 5. P. 16-21 (in Russian).
Li P., Wang Q., Deng G., Guo X., Jiang W., Liu H., Li F., Thanh N.T.K. // Phys. Chem. Chem. Phys. 2017. V. 19. N 36. P. 24742-24751. DOI: 10.1039/C7CP04097K.