SYNTHESIS AND PROPERTIES OF PERIPHERALLY AND NONPERIPHERALLY SUBSTITUTED ZINC AND MAGNESIUM PHTHALOCYANINES BASED ON 3/4-(4-BROMO-2-((4-METHOXYPHENYL)DIAZENYL)PHENOXY)PHTHALONITRILE

  • Anna N. Bychkova Ivanovo State University of Chemistry and Technology
  • Anzhela A. Shishlova Ivanovo State University of Chemistry and Technology
  • Kristina Y. Kazaryan Ivanovo State University of Chemistry and Technology
  • Tatyana V. Tikhomirova Ivanovo State University of Chemistry and Technology
  • Arthur S. Vashurin Ivanovo State University of Chemistry and Technology
Keywords: phthalonitrile, metal phthalocyanines, azochromophore, protonation, quantum yield of singlet oxygen formation, fluorescence

Abstract

The work describes the optimization of the procedure for the synthesis of 4-bromo-2-methoxyphenyldiazenylphenol, which is used as a nucleophile in the presence of 3- and 4-nitrophthalonitriles. The resulting 3-(4-bromo-2-((4-methoxyphenyl)diazenyl)phenoxy)- and 4-(4-bromo-2-((4-methoxyphenyl)diazenyl)phenoxy)phthalonitriles were used for template condensation with magnesium or zinc acetate. Methods for isolating and purifying the synthesized compounds are described. The structure and composition were confirmed using IR, 1H NMR and electron spectroscopy. Peripheral functionalization of macrocycle by a conjugate azochromophore fragment gives molecules phthalocyanine with special optical properties. This class of phthalocyanines containing an additional chromophore system in their composition is attractive for potential use not only as pigments and dyes traditional for phthalocyanine compounds, but also as chemical sensors, dye-sensitized solar cells and photosensitizers for PDT. The resulting nitriles and phthalocyanine complexes dissolve in chloroforms, toluene, THF, and DMF. The influence of the substituent location on the spectral properties of the obtained metal complexes (Zn, Mg) in organic solvents has been studied. For non-peripherally substituted metal phthalocyanines, acid-base properties are studied. To observe and study the acid-base effect, spectrophotometric titration of the trifluoroacetic acid complex in toluene is used. It is shown that the magnesium complex is more basic than the zinc complex. In this work, the luminescent properties are also studied and the quantum yields of singlet oxygen formation for synthesized complexes in THF are determined. The influence of the substituent location on the quantum yield of fluorescence, as well as on the generation of singlet oxygen, is noted in the work.

For citation:

Bychkova A.N., Shishlova A.A., Kazaryan K.Yu., Tikhomirova T.V., Vashurin A.S. Synthesis and properties of peripherally and nonperipherally substituted zinc and magnesium phthalocyanines based on 3/4-(4-bromo-2-((4-methoxyphenyl)diazenyl)phenoxy)phthalonitrile. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 17-27. DOI: 10.6060/ivkkt.20246704.6919.

References

Yabaş E., Biçer E., Altındal A. Novel reduced graphene oxide/zinc phthalocyanine and reduced graphene ox-ide/cobalt phthalocyanine hybrids as high sensitivity room temperature volatile organic compound gas sensors. J. Mol. Struct. 2023. V. 1271. P. 134076. DOI: 10.1016/j.molstruc.2022.134076.

Botnar A., Tikhomirova T., Nalimova K., Erzunov D., Razumov M., Vashurin A. Novel d-and f-metal phthalo-cyaninates based on 4-(2, 4, 5-trichlorophenoxy) phthalo-nitrile. Synthesis, spectroscopic and fluorescent properties. J. Mol. Struct. 2020. V. 1205. P. 127626. DOI: 10.1016/j.molstruc. 2019.127626.

Orman E.B., Yazar Z., Pişkin M., Odabaş Z., Özkaya A.R. Novel 2, 6-dimethoxyphenoxy alpha substituted phthalocyaninato metal complexes: Electrochemistry, In situ spectroelectrochemistry and oxygen electrocatalysis. Synth. Met. 2022. V. 290. P. 117139. DOI: 10.1016/j.synthmet.2022.117139.

Rozhkova X., Aimukhanov A., Zeinidenov A., Paygin V., Valiev D., Bisquert J., Guerrero A., Alexeev A., Ilyassov B. Nanocomposition of PEDOT: PSS with metal phthalocyanines as promising hole transport layers for or-ganic photovoltaics. Synth. Met. 2023. V. 295. P. 117347. DOI: 10.1016/ j.synthmet.2023.117347.

Izumi Y., Ohara M., Fujii K., Yokoya A., Ogawa M. X-ray irradiation-induced ligand cleavage of a phthalocya-nine derivative, tin (IV) phthalocyanine dichloride: A po-tential for X-ray activation of caged compounds. Chem. Phys. Lett. 2023. V. 822. P. 140508. DOI: 10.1016/j.cplett.2023.140508.

Yıldız B., Ahmetali E., Arslan B. S., Menges N., Nebioğlu M., Şişman İ., Şener M.K. Effect of direct link-age of pyrazole carboxylic acid acceptor/anchoring group on the photovoltaic performance for phthalocyanine-sensitized solar cells. Dyes Pigm. 2022. V. 206. P. 110644. DOI: 10.1016/j.dyepig. 2022.110644.

Botnar A.A., Bychkova A.N., Domareva N.P., Tikhomirova T.V., Vashurin A.S. Directed synthesis and study of their spectroscopic behavior in solution of rareearth phthalocyaninates substituted by benzyloxy-and methylphenylet-hylphenoxy-groups. J. Incl. Phenom. Macrocycl. Chem. 2022. V. 102. P. 303-311. DOI: 10.1007/s10847-021-01120-3.

Kobayashi N. Spectroscopically and/or structurally intriguing phthalocyanines and related compounds. Part 1. Monomeric systems. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 4. P. 446. DOI: 10.6060/ivkkt.20196206.5913_1.

Znoyko S.A., Maizlish V.E., Koifman O.I. Bifunctionally substituted phthalocyanines. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 1. P. 6-35. DOI: 10.6060/ivkkt.20246701.6859.

Wang J., Dong W., Chen Q., Si Z., Cui X., Liu D., Duan Q. Syntheses and nonlinear optical behavior of four-arm starshaped phthalocyanine indium polymers containing azobenzene. Dyes Pigm. 2021. V. 194. P. 109632. DOI: 10.1016/ j.dyepig.2021.109632.

Aralekallu S., Mohammed I., Manjunatha N., Palanna M., Sannegowda L.K. Synthesis of novel azo group sub-stituted polymeric phthalocyanine for amperometric sensing of nitrite. Sens. Actuator B: Chem. 2019. V. 282. P. 417-425. DOI: 10.1016/j.snb.2018.11.093.

Kantar C., Mavi V., Baltaş N., İslamoğlu F., Şaşmaz S. Novel zinc (II) phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties. J. Mol. Struct. 2016. V. 1122. P. 88-99. DOI: 10.1016/j.molstruc.2016. 05.055.

Vashurin A.S., Boborov A.V., Botnar A.A., Bychkova A.N., Gornukhina O.V., Grechin O.V., Erzunov D.A., Kovanova M.A., Ksenofontova K.V., Kuznetsov V.V., Lefedova O.V., Latypova A.R., Litova N.A., Marfin Y.S., Pukhovskaya S.G., Tarasyuk I.A., Tikhomirova T.V., Rumyantsev E.V., Usoltsev S.D., Filippov D.V. Chemistry of liquid-phase systems and functional materials based on coordination compounds of linear and cyclic polypyrroles. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 7. P. 76-97. DOI: 10.6060/ ivkkt.20236607.6840j.

Mgidlana S., Nyokong T. Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc (II) phthalo-cyanines conjugated to silvermagnetic nanoparticles. In-org. Chim. Acta. 2021. V. 514. P. 119970. DOI: 10.1016/j.ica. 2020.119970.

Bychkova A.N., Tikhomirova T.V., Domareva N.P., Botnar A.A., Vashurin A.S. Synthesis and Properties of Gadolinium and Erbium Phthalocyanines with an Azo-chromophore at the Macrocycle Periphery. Russ. J. Gen. Chem. 2022. V. 92. N 10. P. 2016-2022. DOI: 10.1134/S1070363 222100152.

Thimiopoulos A., Simandiras E.D., Psaroudakis N. Asymmetric phthalocyanines (A3B type) containing ami-nophenoxy and hydroxyphenyl-diazenyl-phenoxy substituents. Inorg. Chim. Acta. 2019. V. 498. P. 119105. DOI: 10.1016/j.ica. 2019.119105.

Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 2011. V. 40. N 7. P. 3835-3853. DOI: 10.1039/C0CS00183J.

Favre-Besse F.C., Poirel O., Bersot T., Kim-Grellier E., Daumas S., El Mestikawy S., Acher F., Pietrancosta N. Design, synthesis and biological evaluation of smallazo-dyes as potent vesicular glutamate transporters inhibitors. Eur. J. Med. Chem. 2014. V. 78. P. 236-247. DOI: 10.1016/j.ejmech. 2014.03.056.

Said B., Souad M.R., Ahmed E.H. A review on classifica-tions, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020. V. 115. P. 107891. DOI: 10.1016/j.inoche.2020.107891.

Şahin S., Pişkin M., Altun S., Durmuş M., Odabaş Z. First investigation on the photophysical and photochemical properties of azo-bridged phthalocyanine photosensitizers. J. Lumin. 2016. V. 180. P. 219-223. DOI: 10.1016/j.jlumin.2016.08.039.

Tahir T., Tabassum R., Javed Q., Ali A., Ashfaq M., Shahzad M.I. Synthesis, kinetics, structure-activity rela-tionship and in silico ADME studies of new diazenyl azo-phenol derivatives against urease, SARS-CoV-2 main pro-tease (Mpro) and ribosomal protein S1 (RpsA) of Mycobacterium tuberculosis. J. Mol. Struct. 2022. V. 1254. P. 132336. DOI: 10.1016/j.molstruc.2022.132336.

Mishra V.R., Ghanavatkar C.W., Mali S.N., Qureshi S.I., Chaudhari H.K., Sekar N. Design, synthesis, antimi-crobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzo-thiazole derivatives. Comput. Biol. Chem. 2019. V. 78. P. 330-337. DOI: 10.1016/j.compbiolchem.2019.01.003.

Ağırtaş M.S., Çelebi M., Gümüş S., Özdemir S., Okumuş V. New water soluble phenoxy phenyl diazenyl benzoic acid substituted phthalocyanine derivatives: Synthesis, antioxidant activities, atypical aggregation behavior and electronic properties. Dyes Pigm. 2013. V. 99. N 2. P. 423-431. DOI: 10.1016/j.dyepig.2013.05.019.

Taraimovich E.S., Stuzhin P.A., Koifman O.I. Acidbase properties of thianaphthene-annulated porphyrazine and tetra (pyrazino) porphyrazine complexes with aluminum group metals. Russ. J. Gen. Chem. 2013. V. 83. P. 392-397. DOI: 10.1134/S1070363213020266.

Ogunsipe A., Maree D., Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J. Mol. Struct. 2003. V. 650. N 1-3. P. 131-140. DOI: 10.1016/S0022-2860(03)00155-8.

Van Leeuwen M., Beeby A., Fernandes I., Ashworth S.H. The photochemistry and photophysics of a series of alpha octa (alkyl-substituted) silicon, zinc and palladium phthalocyanines. Photochem. Photobiol. Sci. 2013. V. 13. P. 62-69. DOI: 10.1039/c3pp50219h.

Li Z., Xu S., Chen Z., Zhang F. Photophysical and non-linear optical properties of an azobenzene substituted zinc phthalocyanine. Optik. 2014. V. 125. N 15. P. 3833-3836. DOI: 10.1016/j.ijleo.2014.01.176.

Chen Z., Zhong C., Zhang Z., Li Z., Niu L., Bin Y., Zhang F. Photoresponsive J-Aggregation Behavior of a Novel Azobenzene− Phthalocyanine Dyad and Its Third-Order Optical Nonlinearity. J. Phys. Chem. B. 2008. V. 112. N 25. P. 7387-7394. DOI: 10.1021/jp710461p.

Gorduk S. Investigation of photophysicochemical properties of non-peripherally tetra-substituted metal-free, Mg(II), Zn(II) and In(III)CI phthalocyanines. Polyhedron. 2020. V. 189. P. 114727-114736; DOI: 10.1016/j.poly.2020.114727.

Published
2024-03-04
How to Cite
Bychkova, A. N., Shishlova, A. A., Kazaryan, K. Y., Tikhomirova, T. V., & Vashurin, A. S. (2024). SYNTHESIS AND PROPERTIES OF PERIPHERALLY AND NONPERIPHERALLY SUBSTITUTED ZINC AND MAGNESIUM PHTHALOCYANINES BASED ON 3/4-(4-BROMO-2-((4-METHOXYPHENYL)DIAZENYL)PHENOXY)PHTHALONITRILE. ChemChemTech, 67(4), 17-27. https://doi.org/10.6060/ivkkt.20246704.6919
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)