MAGNESIUM AND IRON OXIDES INFLUENCE ON SINTERING PROCESSES AND PHASE FORMATION OF ANORTHITE CERAMICS BASED ON NATURAL RAW MATERIALS

Keywords: anorthite, ceramics, kaolin, magnesium oxide, iron oxide, sintering, porosity, strength, proppants

Abstract

Ceramic proppants based on silicates and aluminosilicates with various structures are used in the hydrocarbons mining with hydraulic fracturing method. The disadvantage of these known proppants is their high apparent density. Anorthite CaO∙Al2O3∙2SiO2 is a prospective material for proppants production. However, its wide application in this field is restricted due to insufficient knowledge of the MgO-CaO-Fe2O3(FeO)-Al2O3-SiO2 system. Consequently, the physical and chemical processes in the mixes of kaolin and chalk with magnesium oxide and iron(III) oxide additives during firing for anorthite ceramics were studied. It was found that adding of 5 – 10% magnesium oxide in batch for anorthite synthesis leads to obtain ceramics with near-zero water absorption at 1250 °C. Increasing the firing temperature to 1300 °C leads to overfiring of the ceramic and a decrease in its strength. Magnesium oxide reacts with the kaolin to form spinel and forsterite. The highest compressive strength (350 – 390 MPa) is achieved for ceramics with 5% MgO in the batch. The ceramics has fine-grained structure with the grain sizes less than 5 μm. Iron(III) oxide is a weak mineralizer for anorthite synthesis, and its mineralizing effect occurs during the formation of gehlenite-based solid solutions. The sintering process of anorthite ceramics is intensified at 1350 °C due to the melting of the anorthite – iron(III) oxide eutectic. This leads to decrease the water absorption of ceramics with 5 – 10% Fe2O3 in batch to about 2 – 3%. The compressive strength of this ceramics is about 230 – 250 MPa.

For citation:

Sharafeev S.M., Sergeev N.P., Mezhenin A.V. Magnesium and iron oxides influence on sintering processes and phase formation of anorthite ceramics based on natural raw materials. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 101-107. DOI: 10.6060/ivkkt.20246704.6940.

References

Liang F., Sayed M., Al-Muntasheri G.A., Chang F.F., Li L. A comprehensive review on proppant technologies. Petroleum. 2016. V. 2. N 1. P. 26-39. DOI: 10.1016/j.petlm.2015.11.001.

Feng Y.-C., Ma C.-Y., Deng J.-G., Li X.-R., Chu M.-M., Hui C., Luo Y.-Y. A comprehensive review of ultralow-weight proppant technology. Pet. Sci. 2021. V. 18. N 3. P. 807-826. DOI: 10.1007/s12182-021-00559-w.

Ding D., Fang Y., Xiao G., Zhu X., Fu P., Chong X. Effects of sintering temperature on microstructure and prop-erties of low-grade bauxite-based ceramic proppant. Int. J. Appl. Ceraм. Technol. 2021. V. 18. N 5. P. 1832-1844. DOI: 10.1111/ijac.13797.

Vakalova T.V., Reshetova A.A., Revva I.B., Rusinov P.G., Balamygin D.I. Effect of thermochemical activation of clay raw materials on phase formation, microstructure and properties of aluminosilicate proppants. Appl. Clay Sci. 2019. V. 183. P. 105335. DOI: 10.1016/j.clay.2019.105335.

Vakalova T.V., Devyashina L.P., Sharafeev Sh.M., Sergeev N.P. Phase formation, structure and properties of light-weight aluminosilicate proppants based on clay-diabase and claygranite binary mixes. Ceram. Int. 2021. V. 47. N 11. P. 15282-15292. DOI: 10.1016/j.ceramint.2021.02.092.

Li L., Wen R.L., Zhang X.G., Wang C.B., Fang M.H., Liu Y.G., Wu X.W., Huang Z.H. Effect of Mineral Com-position and Sintering Temperature on the Synthetic Cordierite. Key Eng. Mater. 2014. V. 633. P. 61–64. DOI: 10.4028/www.scientific.net/kem.633.61.

Zou X., Hou R., Hao J., Li G., Wand K., Tian Y. The Low Temperature Preparation of Ultra Low-Density Ce-ramic Proppants by Adding Fly Ash. Ceram. Silik. 2019. V. 64. N 2. P. 107-114. DOI: 10.13168/cs.2019.0055.

Vakalova T.V., Pogrebenkov V.M., Revva I.B., Rusinov P.G., Balamygin D.I. Effect of fluorine-containing addi-tive on the synthesis and sintering of compositions from natural raw materials in the “cordierite–mullite” system. Ceram. Int. 2019. V. 45. N 8. P. 9695–9703. DOI: 10.1016/j.ceramint. 2019.02.079.

Zaiou S., Harabi A., Harabi E., A. Guechi A., Karboua N., Benhassine M.-T., Zouai S., Guerfa F. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite. Cerâmica. 2016. V. 62. N 364. P. 317-322. DOI: 10.1590/ 0366-69132016623642015.

Ke S., Cheng X., Wang Y., Wang Q., Wang H. Dolomite, wollastonite and calcite as different CaO sources in anorthite-based porcelain. Ceram. Int. 2013. V. 39. N 5. P. 4953–4960. DOI: 10.1016/j.ceramint.2012.11.091.

Kenzour A., Belhouchet H., Kolli M., Djouallah S., Kherifi D., Ramesh S. Sintering behavior of anorthite-based composite ceramics produced from natural phos-phate and kaolin. Ceram. Int. 2019. V. 45. N 16. P. 20258-20265. DOI: 10.1016/ j.ceramint.2019.06.299.

Cheng X., Ke S., Wang Q., Wang H., Shui A., Liu P. Fabrication and characterization of anorthite-based ceram-ic using mineral raw materials. Ceram. Int. 2012. V. 38. N 4. P. 3227–3235. DOI: 10.1016/j.ceramint.2011.12.028.

Kurama S., Ozel E. The influence of different CaO source in the production of anorthite ceramics. Ceram. Int. 2009. V. 35. N 2. P. 827–830. DOI: 10.1016/j.ceramint.2008.02.024.

Fuertes V., Reinosa J.J., Fernández J.F., Enríquez E. Engineered feldspar-based ceramics: A review of their po-tential in ceramic industry. J. Eur. Ceram. Soc. 2022. V. 42. N 2. P. 307-326. DOI: 10.1016/j.jeurceramsoc.2021.10.017.

Mergen A., Kayed T.S., Bilen M., Qasrawi A.F., Gürü M. Production of Anorthite from Kaolinite and CaCO3 via Colemanite. Key Eng. Mater. 2004. V. 264-268. P. 1475–1478. DOI: 10.4028/www.scientific.net/kem.264-268.1475.

Filatova N.V., Kosenko N.F., Denisova O.P., Sadkova K.S. The physicochemical investigation of the Zhuravliny Log kaolin. Part 1. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 85-93. DOI: 10.6060/ivkkt.20226508.6656.

Smorokov A.A., Kantaev A.S., Bryankin D.V., Mi-klashevich A.A. Development of a low-temperature desili-conization method for the polymetallic slags with a solution of ammonium hydrogen fluoride. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 70-76 (in Russian). DOI: 10.6060/ivkkt.20226508.6608.

Skripnikova N.K, Semenovykh M.A, Shekhovtsov V.V. Anorthite-based building ceramics. Mag. Civ. Eng. 2023. V. 117. N 1. P. 11706. DOI: 10.34910/MCE.117.6.

Shekhovtsov V.V., Skripnikova N.K., Semenovykh M.A., Volokitin O.G. Anorthite-Containing Building Ceramic Using Metallurgical Sludge Waste. Glass Ceram. 2021. V. 78. N 5-6. P. 237-241. DOI: 10.1007/s10717-021-00386-w.

Tabit K., Hajjou H., Waqif M., Saâdi L. Effect of CaO/SiO2 ratio on phase transformation and properties of anorthite-based ceramics from coal fly ash and steel slag. Ceram. Int. 2019. V. 46. N 6. P. 7550-7558. DOI: 10.1016/j.ceramint.2019.11.254.

Csáki Š., Štubňa I., Kaljuvee T., Dobroň P., Lukáč F., Trník A. Electric properties of anorthite ceramics prepared from illitic clay and oil shale ash. J. Mater. Res. Technol. 2022. V. 21 P. 4164-4173. DOI: 10.1016/j.jmrt.2022.11.030.

Xu L., Liu Y., Chen M., Wang N., Chen H., Liu L. Production of green, low-cost and high-performance anor-thite-based ceramics from reduced copper slag. Constr. Build. Mater. 2023. V. 375. P. 130982. DOI: 10.1016/j.conbuildmat. 2023.130982.

Essaidi N., Samet B., Baklouti S., Rossignol S. The role of hematite in aluminosilicate gels based on metakaolin. Ceram. Silik. 2014. V. 58. N 1. P. 1-11.

Boyanov B.S. Solid state interactions in the systems CaO(CaCO3)-Fe2O3 and CuFe2O4-CaO. J. Min. Metall. Sect. B Metall. 2005. V. 41. N 1. P. 67-77. DOI: 10.2298/ JMMB0501067B.

Pogrebenkov V.M., Sedel’nikova M.B., Vereshchagin V.I. Ceramic pigments with diopside and anorthite struc-tures based on wollastonite. Glass Ceram. 1999. V. 56. N 1-2. P. 55-57. DOI: 10.1007/BF02681408.

Roeder P.L., Osborn E.F. Experimental data for the system MgO-FeO-Fe2O3-CaAl2Si2O8-SiO2 and their petrologic implications. Am. J. Sci. 1966. V. 264. N 6. P. 428-480. DOI: 10.2475/ajs.264.6.428.

Published
2024-03-04
How to Cite
Sharafeev, S. M., Sergeev, N. P., & Mezhenin, A. V. (2024). MAGNESIUM AND IRON OXIDES INFLUENCE ON SINTERING PROCESSES AND PHASE FORMATION OF ANORTHITE CERAMICS BASED ON NATURAL RAW MATERIALS. ChemChemTech, 67(4), 101-107. https://doi.org/10.6060/ivkkt.20246704.6940
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)