BATCH COMPOSITION INFLUENCE ON SINTERING AND CRYSTALLIZATION PROCESSES OF CORDIERITE GLASSES OBTAINED BY THERMAL PLASMA MELTING

Keywords: cordierite, glass, glass-ceramics, talc, thermal plasma melting, crystallization, zirconia, titanium oxide

Abstract

This article focuses on the production of glasses and glass-ceramic materials with a cordierite (2MgO∙2Al2O3∙5SiO2) composition. The processes of crystallization and sintering of cordierite glasses, which are based on natural raw materials, pure oxides and pre-synthesized cordierite, have been investigated. It has been determined that cordierite glasses produced via plasma melting exhibit high structural defects attributed to rapid heating and cooling rates. The relaxation of microstresses in the glasses takes place within the temperature range of 480 – 490 °C. Glasses based on synthesized cordierite exhibit a crystallization temperature of 930 – 1020 °C, depending on the presence and type of nucleating agents. This is approximately 20 – 50 °C lower compared to glasses based on component mixtures. The primary crystallization product of studied glasses at 900 °C is the high-quartz solid solution with formula MgO∙Al2O3∙3SiO2, which is dissociate above 1000 °C with the formation of cordierite. The addition of 5% ZrO2 to the batch increases the viscosity of softened glasses and their crystallization temperature, resulting in increased activity of glass powders in the sintering processes due to the higher impact of liquid-phase sintering on the general densification process of glass-ceramics. This allows for the production of glass-ceramics with open porosity of 2 – 4% at 1300 – 1350 °C. The addition of 5% TiO2 to the batch reduces the glass crystallization temperature. However it does not significantly effect on the cordierite glass-ceramics sintering processes.

For citation:

Sharafeev S.M., Shekhovtsov V.V., Zvyagina E.E. Batch composition influence on sintering and crystallization processes of cordierite glasses obtained by thermal plasma melting. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 7. P. 80-87. DOI: 10.6060/ivkkt.20246707.7032.

References

Kuscer D., Ines B., Hrovat M., Malic B. The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 2017. V. 37. N 2. P. 739-746. DOI: 10.1016/j.jeurceramsoc.2016.08.032.

Vandray S.N., Zaychuk T.V., Ustinova Yu.S., Orlov A.A., Lemeshev D.O. Cordierite Glass-Ceramic for Radi-oengineering Articles. Glass Ceram. 2020. V. 76. N 9-10. P. 334-339. DOI: 10.1007/s10717-020-00195-7.

Smail L., Redaoui D., Sahnoune F., Saheb N. Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia. Bol. Soc. Esp. Cer. Vidr. 2021. V. 60. N 5. P. 291-306. DOI: 10.1016/j.bsecv.2020.03.008.

Yahya A.M, El-Kalioubi B.A., Soltan A.M.M., Esmat M.A. Hamzawy., Kenawy S.H. Cordierite ceramic through glass and ceramic routes from kaolin and talc. Egypt. J. Chem. 2021. V. 64. N 4. P. 1751-1758. DOI: 10.21608/EJCHEM.2021.53853.3115.

Tolkacheva A.S., Pavlova I.A. Technology of ceramics for electronic industry materials. Yekaterinburg: Izd. UrFU. 2019. V. 1. 124 p. (in Russian).

Tabit K., Waqif M., Saâdi L. Crystallization behavior and properties of cordierite synthesized by sol-gel technique and hydrothermal treatment. J. Aust. Ceram. Soc. 2019. V. 55. N 2. P. 469-477. DOI: 10.1007/s41779-018-0253-9.

Menchi A.M., Scian A.N. Mechanism of cordierite formation obtained by the sol–gel technique. Mater. Lett. 2005. V. 59. N 21. P. 2664-2667. DOI: 10.1016/j.matlet.2005.04.014

Janković-Častvan I., Lazarević S., Tanasković D., Orlović A., Petrović R., Janaćković Dj. Phase transformation in cordierite gel synthesized by non-hydrolytic sol–gel route. Ceram. Int. 2007. V. 33. N 7. P. 1263-1268. DOI: 10.1016/j.ceramint.2006.05.003.

Xu X., Lao X. Effect of MgO/SiO2 ratio and Al2O3 content on crystallization behavior and properties of cordierite-based glass–ceramics. J. Eur. Ceram. Soc. 2021. V. 41. N 2. P. 1593-1602. DOI: 10.1016/j.mtcomm.2022.103316.

Wang L., Ma B., Ren X., Yu C., Tian J., Liu C., Deng C., Hu C., Liu Z., Yu J., Jiang Z. Phase-engineering strategy of ZrO2 for enhancing the mechanical properties of porous cordierite ceramics. Mater. Today Commun. 2022. V. 30. P. 103032. DOI: 10.1016/j.mtcomm.2021.103032.

Sun Y., Yang Z., Delong C., Zhang Z., Liu Q., Fang S., Feng L., Shi L., Wang Y., Jia D. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering. J. Inorg. Mater. 2022. V. 37. N 12. P. 1351. DOI: 10.15541/jim20220179.

Yu W., Cao S., Wang J., Zhang Z., Han J., Liu C., Ruan J. Crystallization mechanisms of cordierite glass-ceramics with «surface-center» crystallization behavior. J. Eur. Ceram. Soc. 2021. V. 41. N 13. P. 6708-6721. DOI: 10.1016/j.jeurceramsoc.2021.05.061.

Song L., Wu J.-F., Li Z., Hao X., Yu Y. Crystallization mechanisms and properties of α-cordierite glass–ceramics from K2O–MgO–Al2O3–SiO2 glasses. J. Non-Cryst. Solids. 2015. V. 419. P. 16-26. DOI: 10.1016/j.jnoncrysol.2015.03.023.

Li B., Xia Q., Wang Z. Effect of MnO on the crystallization, microstructure, and properties of MgO-Al2O3-SiO2 glass-ceramics. J. Aust. Ceram. Soc. 2021. V. 57. N 3. P. 927-932. DOI: 10.1007/s41779-021-00588-z.

Dechandt I.C.J., Soares P., Pascual M.J., Serbena F.C. Sinterability and mechanical properties of glass-ceramics in the system SiO2-Al2O3-MgO/ZnO. J. Eur. Ceram. Soc. 2020. V. 40. N 15. P. 6002-6013. DOI: 10.1016/j.jeurceramsoc.2020.07.032.

Volokitin O.G., Shekhovtsov V.V. Prospects of Application of Low-Temperature Plasma in Construction and Architecture. Glass Phys. Chem. 2018. V. 44. N 3. P. 251-253. DOI: 10.1134/S1087659618030185.

Boissonnet G., Chalk C., Nicholls J.R., Bonnet G., Pedraza F. Thermal insulation of CMAS (Calcium-Magnesium-Alumino-Silicates) attacked plasma-sprayed thermal barrier coatings. J. Eur. Ceram. Soc. 2020. V. 40. N 5. P. 2042-2049. DOI: 10.1016/j.jeurceramsoc.2019.12.040.

Samal S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017. V. 142. P. 3131-3150. DOI: 10.1016/j.jclepro.2016.10.154.

Smirnova K.V., Izvekova A.A., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. Plasma-solution syn-thesis of nickel-containing powders under the action of a glow discharge of direct current. ChemChemTech [Izv. Vyssh.Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 112-118 (in Russian). DOI: 10.60/ivkkt.20226512.6743.

Smirnova K.V., Shutov D.A., Ivanov A.N., Manukyan A.S., Rybkin V.V. Plasmasolution synthesis of iron oxide (III). ChemChemTech [Izv. Vyssh.Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 7. P. 83-88 (in Russian). DOI: 10.60/ivkkt.20216407.6409.

Ohsato H., Kim J.S., Cheon С., Kagomiya L. Crystallization of indialite/cordierite glass ceramics for millimeter-wave dielectrics. Ceram. Int. 2015. V. 41. P. S588-S593. DOI: 10.1016/j.ceramint.2015.03.140.

Barry T.I., Cox J.M., Morrell R. Cordierite glass-ceramics - effect of TiO2 and ZrO2 content on phase sequence during heat treatment. J. Mater. Sci. 1978. N 13. P. 594-610. DOI: 10.1007/BF00541810.

Shekhovtsov V.V, Abzaev Yu.A., Volokitin O.G., Skripnikova N.K., Klopotov A.A. Structure and Phase Composition of Natural Magnesite in 1173–6500 K Temperature Range. Russ. Phys. J. 2022. V. 65. N 7. P. 1142-1148. DOI: 10.1007/s11182-022-02743-w.

Matvienko O.V., Volokitin O.G., Shekhovtsov V.V. Inves-tigation of the Melting of Silicate Materials as a Result of Exposure to Low-Temperature Plasma. J. Eng. Phys. Thermo-phys. 2023. V. 96. N 1. P. 150-159. DOI: 10.1007/s10891-023-02671-7.

Skripnikova, N.K., Otmakhov V.I., Volokitin O.G. Pro-cesses occurring during plasma-chemical synthesis of refractory silicate materials. Glass Ceram. 2010. V. 67. N 1-2. P. 19-21. DOI: 10.1007/s10717-010-9221-8.

Savova O.V., Fesenko O.I., Voronov G.K., Tymofieiev V.D., Babich P.V. Investigation of the structure glass-ceramic materials according to data of IR spectroscopy. Vopr. Khim.Khim. Tekhnol. 2021. N 6. P. 71-78. DOI: 10.32434/ 0321-4095-2021-139-6-71-78.

Cheng Y., Thompson D.P. The transformability of tetragonal ZrO2 in some glass systems. J. Mater. Sci. Lett. 1990. N 9. P. 24–27. DOI: 10.1007/BF00722858.

Published
2024-05-30
How to Cite
Sharafeev, S. M., Shekhovtsov, V. V., & Zvyagina, E. E. (2024). BATCH COMPOSITION INFLUENCE ON SINTERING AND CRYSTALLIZATION PROCESSES OF CORDIERITE GLASSES OBTAINED BY THERMAL PLASMA MELTING. ChemChemTech, 67(7), 80-87. https://doi.org/10.6060/ivkkt.20246707.7032
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)