1H NMR SPECTRAL CHARACTERISTICS OF PYRIDO[1,2-A]BENZIMIDAZOLE AND ITS DERIVATIVES

  • Roman S. Begunov P. G. Demidov Yaroslavl State University
  • Artem N. Fakhrutdinov N.D. Zelinsky Institute of Organic Chemistry of the RAS
  • Alexander A. Sokolov Yaroslavl State Technical University
  • Luiza I. Savina P. G. Demidov Yaroslavl State University
  • Nikita E. Bashkov P. G. Demidov Yaroslavl State University
Keywords: pyrido[1,2-a]benzimidazoles, NMR spectroscopy, proton magnetic resonance, chemical shifts, NOESY, HMBC

Abstract

A systematic study of proton NMR spectra of pyrido[1,2-a]benzimidazole and 65 of its mono-, di- and poly-substituted derivatives with substituents in the pyridine and/or benzene fragment was carried out. The choice of certain structures is related to the great practical significance, as well as the complexity of interpreting their 1H NMR spectra. As a result of the research, a number of general patterns of arrangement (characteristic ranges) on the scale of chemical shifts of signals of hydrogen atoms associated with the nucleus of the studied heterocycles have been established. In the 1H NMR spectrum of pyrido[1,2-a]benzimidazole and most of its derivatives, the H1 signal of the pyridine cycle associated with a carbon atom was released in the weakest field, which experienced a strong electron acceptor effect of the nodal endocyclic nitrogen atom. The signal of another heteroaromatic proton H2 was usually detected in the strongest field region of the spectrum. The H8 signal had the smallest chemical shift among the aromatic protons. As the analysis of 1D 1H NOE spectra of a series of pyrido[1,2-a]benzimidazoles showed, this position of the heterocycle was the reaction center for the introduction of an electrophilic particle under SEAr reaction conditions. The H9 signal was detected in a weaker field relative to other aromatic protons. The influence of the electronic nature of the substituent and its position in the condensed heterocycle on the distribution of the electron density in the molecule has been established. It is concluded that the transmission of electronic effects of substituents in pyrido[1,2-a]benzimidazoles differs from benzoid systems. A number of controversial proton signals were attributed by means of 1H-1H NOESY and 1H-15N HMBC spectroscopy. The conducted studies will allow to use the data of 1H NMR spectroscopy to determine potential reaction centers in pyrido[1,2-a]benzimidazoles and other similar condensed pyridine derivatives with a nodal nitrogen atom.

For citation:

Begunov R.S., Fakhrutdinov A.N., Sokolov A.A., Savina L.I., Bashkov N.E. 1H NMR spectral characteristics of pyrido[1,2-a]benzimidazole and its derivativese. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 5. P. 43-53. DOI: 10.6060/ivkkt.20246705.6971.

References

Koshelev V.N., Ilkov K.V., Primerova O.V., Gladkikh A.A. Synthesis, conformational analysis and antioxidant activity of semicarbazones with phenol fragments. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 9. P. 71-76. DOI: 10.6060/ivkkt. 20236609.6906.

Silva R. A., Pereira T.C.S., Souza A. R., Ribeiro P.R. 1H NMR-based metabolite profiling for biomarker identification. Clinica Chimica Acta. 2020. V. 502. P. 269-279. DOI: 10.1016/j.cca.2019.11.015.

Takis P.G., Ghini V., Tenori L., Turano P., Luchinat C. Uniqueness of the NMR approach to metabolomics. TrAC Trends Analyt. Chem. 2019. V. 120. P. 115300. DOI: 10.1016/ j.trac.2018.10.036.

Kashihara M., Gordon C.P., Copéret C. Reactivity of Substituted Benzenes toward Oxidative Addition Relates to NMR Chemical Shift of the Ipso-Carbon. Org. Lett. 2020. V. 22. P. 8910–8915. DOI: 10.1021/acs.orglett.0c03300.

Fizer M., Slivka M., Korol N., Fizer O. Identifying and explaining the regioselectivity of alkylation of 1,2,4-triazole-3-thiones using NMR, GIAO and DFT methods. J. Mol. Struct. 2021. V. 1223. P. 128973-128984. DOI: 10.1016/j.molstruc.2020.128973.

Vilková M., Maľučká L.U., Imrich J. Prediction by 13C NMR of regioselectivity in 1,3‐dipolar cycloadditions of acri-din‐9‐yl dipolarophiles. Magn. Reson. Chem. 2016. V. 54. P. 8–16. DOI: 10.1002/mrc.4307.

Kruszyk M., Jessing M., Kristensen J.L., Jørgensen M. Computational Methods to Predict the Regioselectivity of Electrophilic Aromatic Substitution Reactions of Heteroaro-matic Systems. J. Org. Chem. 2016. V. 81. P. 5128−5134. DOI: 10.1021/acs.joc.6b00584.

Gordon C.P., Raynaud C., Andersen R.A., Copéret C., Eisenstein O. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc. Chem. Res. 2019. V. 52. P. 2278–2289. DOI: 10.1021/acs.accounts.9b00225.

Darwish S.A.Z., Elbayaa R.Y., Ashour H.M.A., Khalil M.A., Badawey E.A.M. Potential Anticancer Agents: De-sign, Synthesis of New Pyrido[1,2-a]benzimidazoles and Related Derivatives Linked to Alkylating Fragments. Med. Chem. 2018. V. 8. P. 86-95. DOI: 10.4172/2161-0444. 1000498.

Teng Q.-H., Peng X.-J., Mo Z.-Y., Xu Y.-L., Tang H.-T., Wang H.-S., Sun H.-B., Pan Y.-M. Transition-Metal-Free C-N and C-C Formation: Synthesis of Ben-zo[4,5]imidazo[1,2-a]pyridines and 2-Pyridones From Ynones. Green Chem. 2018. V. 20. P. 2007-2012. DOI: 10.1039/C8GC00069G.

Okombo J., Brunschwig C., Singh K., Dziwornu G.A., Barnard L., Njoroge M., Wittlin S., Chibale K. Antimalar-ial Pyrido[1,2-a]benzimidazole Derivatives with Mannich Base Side Chains: Synthesis, Pharmacological Evaluation and Reactive Metabolite Trapping Studies. ACS Infect. Dis. 2019. V. 5. P. 372–384. DOI: 10.1021/acsinfecdis.8b00279.

Korkor C.M., Garnie L.F., Amod L., Egan T.J., Chibale K. Intrinsic Fluorescence Properties of Antimalarial Pyri-do[1,2-a]benzimidazoles Facilitate Subcellular Accumulation and Mechanistic Studies in the Human Malaria Parasite Plasmodium falciparum. Org. Biomol. Chem. 2020. V. 18. P. 8668-8676. DOI: 10.1039/D0OB01730B.

Leshabane M., Dziwornu G.A., Coertzen D., Reader J., Moyo P., van der Watt M., Chisanga K., Nsanzubuhoro C., Ferger R., Erlank E., Venter N., Koekemoer L., Chi-bale K., Birkholtz L.-M. Benzimidazole Derivatives Are Po-tent against Multiple Life Cycle Stages of Plasmodium falciparum Malaria Parasites. ACS Infect. Dis. 2021. V. 7. P. 1945-1955. DOI: 10.1021/acsinfecdis.0c00910.

Mayoka G., Keiser J., Häberli C., Chibale K. Structure–Activity Relationship and in Vitro Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies of N-aryl 3-Trifluoromethyl Pyrido[1,2-a]benzimidazoles That Are Efficacious in a Mouse Model of Schistosomiasis. ACS Infect. Dis. 2019. V. 5. P. 418–429. DOI: 10.1021/acsinfecdis. 8b00313.

Probst A., Chisanga K., Dziwornu G.A., Haeberli C., Keiser J., Chibale K. Expanding the activity profile of pyri-do[1,2-a]benzimidazoles: Synthesis and evaluation of novel N1-1-phenylethanamine derivatives against Schistosoma man-soni. ACS Infect. Dis. 2021. V. 7. P. 1032–1043. DOI: 10.1021/acsinfecdis.0c00278.

Begunov R.S., Zaitseva Yu.V., Sokolov A.A., Egorov D.O., Filimonov S.I. Synthesis and antibacterial activity of 1,2,3,4-tetrahydro- and pyrido[1,2-a]benzimidazoles. Pharm. Chem. J. 2022. V.56. P. 22-28. DOI: 10.1007/s11094-022-02596-0.

Sagirli A. A new approach for the synthesis of fluorescent pyrido[1,2-a]benzimidazoles. Synthetic Commun. 2020. V. 50. P. 3298-3307. DOI: 10.1080/00397911.2020.1800742.

Anderson J.C., Chang C.-H., Jathoul A.P., Syed A.J. Synthesis and bioluminescence of electronically modified and rotationally restricted colour-shifting infraluciferin analogues. Tetrahedron. 2019. V. 75. P. 347-356. DOI: 10.1016/ j.tet.2018.11.061.

Rachinskaya O.A., Popov K.V., Ryzvanovich G.A., Bol’sheva N.L., Begunov R.S., Yurkevich O.Yu., Zelenin A.V., Muravenko O.V. Increasing the Resolution of Chromosome Analysis Using Pyrido[1,2-a]benzimidazoles. Russ. J. Genetics. 2012. V. 48. P. 1055–1062. DOI: 10.1134/ S1022795412100080.

Song G., Liu A., Jiang H., Ji R., Dong J., Ge Y. A FRET-based ratiometric fluorescent probe for detection of intrinsically generated SO2 derivatives in Mitochondria. Analyt. Chim. Acta. 2019. V. 1053. P. 148-154. DOI: 10.1016/j.aca. 2018.11.052.

Yang Kai, Luo Shi-He, Chen Si-Hong, Cao Xi-Ying, Zhou Yong-Jun, Lin Yan-Lan, Huo Yan-Ping, Wang Zhao-Yang. Simple inorganic base promoted C–N and C–C formation: synthesis of benzo[4,5]imidazo[1,2-a]pyridines as functional AIEgens used for detecting picric acid. Org. Biomol. Chem. 2021. V. 19. P. 8133-8139. DOI: 10.1039/ D1OB01424B.

Leng J., Xin J., Zhou H., Li K., Hu W., Zhang Y. Theoretical insights into sensing performances of rhodamine-contained two-photon fluorescent probes for mercury ion. Int. J. Quantum Chem. 2021. V. 121. e26435. DOI: 10.1002/ qua.26435.

Begunov R.S., Sokolov A.A., Belova V.O., Fakhrutdinov A.N., Shashkov A.S., Fedyanin I.V. Reaction of substituted pyrido[1,2-a]benzimidazoles with electrophilic agents. Tetrahedron Lett. 2015. V. 56. P. 5701–5704. DOI: 10.1016/j.tetlet. 2015.08.014.

Begunov R.S., Sokolov A.A., Filimonov S.I. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen. Russ. J. Org. Chem. 2020. V. 56. P. 1383–1391. DOI: 10.1134/S1070428020080084.

Aggarwal R., Singh G., Sanz D., Claramunt R.M., Torralba M.C., Torres M.R. NBS mediated one-pot regi-oselective synthesis of 2,3-disubstituted imidazo[1,2-a]pyridines and their unambiguous characterization through 2D NMR and X-ray crystallography. Tetrahedron. 2016. V. 72. P. 3832-3838. DOI: 10.1016/j.tet.2016.04.072.

Popa M.M., Georgescu E., Caira M.R., Georgescu F., Draghici C., Stan R., Deleanu C., Dumitrascu F. Indoliz-ines and pyrrolo[1,2-c]pyrimidines decorated with a pyrimi-dine and a pyridine unit respectively. Beilstein J. Org. Chem. 2015. V. 11. P. 1079–1088. DOI: 10.3762/bjoc.11.121.

Beeby J., Sternhell S., Hoffman-Ostenhof T., Pretsch E., Simon W. Estimation of the chemical shifts of aromatic pro-tons using additive increments. Analyt. Chem. 1973. V. 45. N 8. P. 1571–1573. DOI: 10.1021/ac60330a048.

Published
2024-04-04
How to Cite
Begunov, R. S., Fakhrutdinov, A. N., Sokolov, A. A., Savina, L. I., & Bashkov, N. E. (2024). 1H NMR SPECTRAL CHARACTERISTICS OF PYRIDO[1,2-A]BENZIMIDAZOLE AND ITS DERIVATIVES. ChemChemTech, 67(5), 43-53. https://doi.org/10.6060/ivkkt.20246705.6971
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)