NANOMATERIALS WITH A HIERARCHICAL STRUCTURE BASED ON SODIUM TRITITANATE DERIVATIVES CONTAINING COPPER FOR NEGATIVE ELECTRODES OF SODIUM-ION BATTERIES

  • Denis P. Opra Institute of Chemistry
  • Veniamin V. Zheleznov Institute of Chemistry
  • Sergey L. Sinebryukhov Institute of Chemistry
  • Alexander A. Sokolov Institute of Chemistry
  • Anatoly B. Podgorbunsky Institute of Chemistry
  • Sergey V. Gnedenkov Institute of Chemistry
Keywords: sodium-ion batteries, anode, sodium trititanate, doping, band gap, conductivity

Abstract

Sodium trititanate, Na2Ti3O7, is of interest as a negative electrode material for designing high-power and safe sodium-ion batteries due to the suitable potential of electrochemical sodium intercalation. Nevertheless, Na2Ti3O7 requires qualitative modification to improve its conductive properties, for example, doping with other elements or morphology optimization. Within the scope of this work, sodium trititanate doped with copper in various quantities, consisting of "microflowers" formed by nanotubes and nanosheets, was prepared via a one-stage hydrothermal treatment of titanium and copper salts in 10M sodium hydroxide solution. It was found that, in comparison with the undoped sample, the Cu-doped Na2Ti3O7 shows a narrowed band gap (by 1.1 eV) and increased electronic conductivity (by 2.5 times). The electrochemical insertion and extraction of Na+ ions into copper-doped sodium trititanate were investigated. It was found that the specific capacity of doped Na2Ti3O7 at high current densities of 3C and 4C is 2.0–2.5 times higher as compared to the undoped sample. At low current densities (up to 0.5C), undoped and copper-doped Na2Ti3O7 samples have similar electrochemical performance. The kinetics of charge carriers in electrodes based on such materials in (de-)sodiation processes has been studied. It was shown that Cu-doped Na2Ti3O7 possesses a lower charge transfer resistance and higher Na+ diffusion coefficient. This promotes a decrease in the polarization of the electrode during charge and discharge processes, providing increased specific capacity at high current loads.

For citation:

Opra D.P., Zheleznov V.V., Sinebryukhov S.L., Sokolov A.A., Podgorbunsky A.B., Gnedenkov S.V. Nanomaterials with a hierarchical structure based on sodium trititanate derivatives containing copper for negative electrodes of sodium-ion batteries. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 9. P. 53-61. DOI: 10.6060/ivkkt.20246709.7016.

References

Kumar Prajapati A., Bhatnagar A. // J. Energy Chem. 2023. V. 83. P. 509–540. DOI: 10.1016/j.jechem.2023.04.043.

Nurohmah A.R., Nisa S.S., Stulasti K.N.R., Yudha C.S., Suci W.G., Aliwarga K., Widiyandari H., Purwanto A. // Mater. Renew. Sustain. Energy. 2022. V. 11. N 1. P. 71–89. DOI: 10.1007/s40243-022-00208-1.

Skundin A.M., Kulova T.L., Yaroslavtsev A.B. Sodiumion batteries (a review). Russ. J. Electrochem. 2018. V. 54. N 2. P. 113–152. DOI: 10.1134/S1023193518020076.

Samigullin R.R., Zakharkin M.V., Drozhzhin O.A., Antipov E.V. // Energies. 2023. V. 16. N 7. P. 3051. DOI: 10.3390/en16073051.

Samarin A.S., Ivanov A.V., Fedotov S.S. // Clean Technol. 2023. V. 5. N 3. P. 881–900. DOI: 10.3390/cleantechnol5030044.

Nasraoui M., Urvanov S.A., Filimonenkov I.S., Mordkovich V.Z. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.]. 2023. V. 66. N 10. P. 89–96 (in Russian). DOI: 10.6060/ivkkt.20236610.4y.

Haynes W.M. CRC handbook of chemistry and physics. Hoboken: CRC Press. 2014. P. 2704. DOI: 10.1201/b17118.

Zhao L., Zhang T., Li W., Li T., Zhang L., Zhang X., Wang Z. // Engineering. 2022. V. 24. P. 172–183. DOI: 10.1016/j.eng.2021.08.032.

Kim E.J., Kumar P.R., Gossage Z.T., Kubota K., Hosaka T., Tatara R., Komaba S. // Chem. Sci. 2022. V. 13. N 21. P. 6121–6158. DOI: 10.1039/D2SC00946C.

Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., Passerini S. // Mater. Today. 2019. V. 23. P. 87–104. DOI: 10.1016/j.mattod.2018.12.040.

Li N., Su D. // Carbon Energy. 2019. V. 1. N 2. P. 200–218. DOI: 10.1002/cey2.21.

Li Y., Lu Y., Adelhelm P., Titirici M.-M., Hu Y.-S. // Chem. Soc. Rev. 2019. V. 48. N 17. P. 4655–4687. DOI: 10.1039/C9CS00162J.

Kosova N.V., Shindrov A.A. // Batteries. 2019. V. 5. N 2. P. 39. DOI: 10.3390/batteries5020039.

Kubota K., Dahbi M., Hosaka T., Kumakura S., Komaba S. // Chem. Rec. 2018. V. 18. N 4. P. 459–479. DOI: 10.1002/tcr.201700057.

Piffet C., Vertruyen B., Hatert F., Cloots R., Boschini F., Mahmoud A. // J. Energy Chem. 2022. V. 65. P. 210–218. DOI: 10.1016/j.jechem.2021.05.050.

Stenina I.A., Kozina L.D., Kulova T.L., Skundin A.M., Chekannikov A.A., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2016. V. 61. N 10. P. 1235–1240. DOI: 10.1134/ S003602361610020X.

Opra D.P., Neumoin A.I., Sinebryukhov S.L., Podgorbunsky A.B., Kuryavyi V.G., Mayorov V.Y., Ustinov A.Y., Gnedenkov S.V. // Nanomaterials. 2022. V. 12. N 11. P. 1905. DOI: 10.3390/nano12111905.

Chen J., Zhou X., Mei C., Xu J., Wong C.P. // Electrochim. Acta. 2017. V. 224. P. 446–451. DOI: 10.1016/j.electacta. 2016.12.094.

An Y., Li Z., Xiang H., Huang Y., Shen J. // Open Phys. 2011. V. 9. N 6. P. 1488–1492. DOI: 10.2478/s11534-011-0072-x.

Araújo-Filho A.A., Silva F.L.R., Righi A., da Silva M.B., Silva B.P., Caetano E.W.S., Freire V.N. // J. Solid State Chem. 2017. V. 250. P. 68–74. DOI: 10.1016/j.jssc. 2017.03.017.

Podgorbunsky A.B., Opra D.P., Zheleznov V.V., Sinebryukhov S.L., Gerasimenko A.V., Ziatdinov A.M., Gnedenkov S.V. // Materialia. 2023. V. 27. P. 101640. DOI: 10.1016/j.mtla.2022.101640.

Yang T., Huang Y., Zhang J., Zhu H., Ren J., Li T., Gallington L.C., Lan S., Yang L. // J. Energy Chem. 2022. V. 73. P. 542–548. DOI: 10.1016/j.jechem.2022.06.016.

Opra D.P., Sinebryukhov S.L., Neumoin A.I., Podgorbunsky A.B., Gnedenkov S.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 12. P. 37–43 (in Russian). DOI: 10.6060/ivkkt.2022 6512.6552.

Perfilyeva T.I., Alekseeva A.M., Drozhzhin O.A., Antipov E.V. // Russ. J. Electrochem. 2023. V. 59. N 7. P. 481–488. DOI: 10.1134/S102319352307008X.

Kuryavyi V.G., Ustinov A.Y., Opra D.P., Zverev G.A., Kaidalova T.A. // Mater. Lett. 2014. V. 137. P. 398–400. DOI: 10.1016/j.matlet.2014.09.007.

Opra D.P., Gnedenkov S. V., Sokolov A.A., Zheleznov V.V., Voit E.I., Sushkov Y.V., Sinebryukhov S.L. // Scripta Mater. 2015. V. 107. P. 136–139. DOI: 10.1016/ j.scriptamat.2015.06.004.

Kim G.-S., Kim Y.-S., Seo H.-K., Shin H.-S. // Korean J. Chem. Eng. 2006. V. 23. N 6. P. 1037–1045. DOI: 10.1007/ s11814-006-0027-x.

Ferreira O.P., Souza Filho A.G., Mendes Filho J., Alves O.L. // J. Braz. Chem. Soc. 2006. V. 17. N 2. P. 393–402. DOI: 10.1590/S0103-50532006000200025.

You M., Kim T.G., Sung Y.-M. // Cryst. Growth Des. 2010. V. 10. N 2. P. 983–987. DOI: 10.1021/cg9012944.

Ni J., Fu S., Wu C., Zhao Y., Maier J., Yu Y., Li L. // Adv. Energy Mater. 2016. V. 6. N 11. P. 1502568. DOI: 10.1002/ aenm.201502568.

Anwer S., Huang Y., Liu J., Liu J., Xu M., Wang Z., Chen R., Zhang J., Wu F. // ACS Appl. Mater. Interfaces. 2017. V. 9. N 13. P. 11669–11677. DOI: 10.1021/acsami.7b01519.

Ko J.S., Doan-Nguyen V.V.T., Kim H.-S., Muller G.A., Serino A.C., Weiss P.S., Dunn B.S. // ACS Appl. Mater. Interfaces. 2017. V. 9. N 2. P. 1416–1425. DOI: 10.1021/ acsami.6b10790.

Wang C., Yang Y., Chen Z., He C., Su J., Wen Y. // J. Mater. Sci. Mater. Electron. 2019. V. 30. N 9. P. 8422–8427. DOI: 10.1007/s10854-019-01159-6.

Mei J., Wang T., Qi D., Liu J., Liao T., Yamauchi Y., Sun Z. // ACS Nano. 2021. V. 15. N 8. P. 13604–13615. DOI: 10.1021/acsnano.1c04479.

Published
2024-07-02
How to Cite
Opra, D. P., Zheleznov, V. V., Sinebryukhov, S. L., Sokolov, A. A., Podgorbunsky, A. B., & Gnedenkov, S. V. (2024). NANOMATERIALS WITH A HIERARCHICAL STRUCTURE BASED ON SODIUM TRITITANATE DERIVATIVES CONTAINING COPPER FOR NEGATIVE ELECTRODES OF SODIUM-ION BATTERIES. ChemChemTech, 67(9), 53-61. https://doi.org/10.6060/ivkkt.20246709.7016
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)