STUDY OF PLASTICIZER FROM PRODUCTION WASTE IN CABLE PLASTIC
Abstract
The importance of a comprehensive study of physical, mechanical, technological and operational parameters is shown when assessing the possibility of using bromine-containing plasticizer obtained from petrochemical waste for the production of cable plastic. It is noted that in formulations based on polyvinyl chloride, plasticizers-flame retardants of the phthalate and phosphate types are used, which are capable of imparting high performance and fire-retardant properties to products, as well as maintaining technological indicators in the manufacture of products at the required level. It has been shown that the study of the fire and explosion-proof properties of polyvinyl chloride compositions filled with bromine-containing flame retardants, including the development of fire retardant compositions based on chemical industry waste, is especially important when using cable plastic for insulating cables operated in compliance with special requirements for fire and explosion safety and low toxicity of pyrolysis products during smoldering and smoke formation and burning. The need has been established to develop formulations with an optimal dosage of a plasticizer - a flame retardant with a small release of toxic combustion products. It has been established that plasticized varieties of polyvinyl chloride containing conventional flammable organic plasticizers are inferior in flammability to rigid polyvinyl chloride and have a low oxygen index in the range of 20–24%. The possibility of partial replacement of one of the main plasticizers used in the formulations of polyvinyl chloride plastics, dioctyl phthalate, was investigated. It has been shown that adding an inert mineral filler to polyvinyl chloride plastic compound reduces the tensile strength and brittleness temperature of the polymer composition. It has been proven that replacing the standard plasticizer dioctyl phthalate with a brominated plasticizer from production waste in the cable plastic compound recipe increases the oxygen index, leaving the brittleness temperature, tensile strength and relative elongation indicators at a given level. It has been established that in the formulations of cable plastic modified with bromine-containing plasticizer from production waste, without filler and stabilizer, there is an increase in tensile strength within the range of 25– 45% compared to the analog plasticized with dioctyl phthalate. The role of the processes of dehydrochlorination of polyvinyl chloride and the decomposition of bromine-containing plasticizer with the release of hydrogen bromide in strengthening the polymer composition has been confirmed. In this case, as a result of the secondary reaction of rearrangement of blocks of conjugated bonds and the emergence of additional blocks of conjugated bonds, non-catalytic cross-linking of macromolecules of the polymer composition occurs. It has been established that the use of brominated plasticizer obtained from waste from petrochemical production, as a flame retardant plasticizer in compositions based on polyvinyl chloride for cable plastic is possible, taking into account acceptable dosages and in combination with a standard polyvinyl chloride plasticizer.
For citation:
Plotnikova R.N., Popova L.V. Study of plasticizer from production waste in cable plastic. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 9. P. 76-81. DOI: 10.6060/ivkkt.20246709.7034.
References
Izmailov B.A., Komarova L.G., Rodlovskaya E.N., Markova G.D., Vasnev V.A., Rudakova T.A., Ameliсhev A.A., Novikova N.S. // Plast. Massy. 2016. N (9-10). Р. 15-17 (in Russian). DOI: 10.35164/0554-2901-2016-9-10-15-17.
Vorobieva E.V. // Zhurn. Prikl. Khim. 2021. V. 94. N 8. Р. 1016-1022 (in Russian). DOI: 10.31857/S004446182 1080077.
Vorobieva E.V. // Zhurn. Prikl. Khim. 2021. N 94(9). P. 1155-1163 (in Russian). DOI: 10.31857/S00444618 21090061.
Kudashev S.V., Gres' I.M., Vaniev M.A., Kuznetsov M.V., Varfolomeev M.A., Emel'yanov D.A. // Russ. J. Appl. Chem. 2018. V. 91. N 3. P. 412-416. DOI: 10.1134/ S1070427218030114.
Kudashev S.V., Medvedev V.P. // Russ. J. Appl. Chem. 2018. V. 91. N 3. P. 520-523. DOI: 10.1134/S10704272 18030266.
Plotnikova R.N., Korchagin V.I., Popova L.V. // Plast. Massy. 2022. N (5-6). P. 50-52 (in Russian). DOI: 10.35164/0554-2901-2022-5-6-50-52.
Plotnikova R.N. // Vestn. Voronezh. Gos. Un-ta Inzh. Tekhnol. 2022. V. 84. N 1. P. 202-207 (in Russian). DOI: 20914/2310-1202-2022-1-202-207.
Ta K.K., Bondaletov V.G., Ogorodnikov V.D., Bondaletova L.I. // Vest. Tekhnol. Univ. 2022. V. 25. N 4. P. 34-39 (in Russian). DOI: 10.55421/1998-7072-2022-25-4-34.
Zakharyan E.M., Petrukhina N.N., Maksimov A.L. // Russ. J. Appl. Chem. 2020. 93(9). P. 1271-1313. DOI: 10.31857/S0044461820090017.
Zakharyan E.M., Petrukhina N.N., Dzhabarov E.G., Maksimov A.L. // Russ. J. Appl. Chem. 2020. V. 93. N 10. P. 1445-1490. DOI: 10.31857/S0044461820100011.
Ushkov V.A., Lalayan V.M., Nevzorov D.I., Lomakin S.M. // Pozharovzryvobezopastnost. 2013. V. 22. N 10. P. 25-31(in Russian). DOI: 10.18322/PVB.2018.22.10.25-33.
Beshaposhnikova V.I. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2005. V. 48. N 2. P. 67-70 (in Russian).
Miyake Y. // Sci. Total Environ. 2017. N 601–602. P. 1333–1339. DOI: 10.1016/j.scitotenv.2017.05.249.
Akhrarov B.B., Mukhamedgaliev B.A. // Plast. Massy. 2016. N 11-12. P. 37-38 (in Russian). DOI: 10.35164/0554-2901-2016-11-12-37-38.
Akhrarov B.B., Mukhamedgaliev B.A. // Plast. Massy. 2016. N 7-8. P. 25-27 (in Russian).
Plotnikova R.N., Korchagin V.I., Popova L.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 11. P. 112-116 (in Russian). DOI: 10.6060/ivkkt.20216411.6429.
Maydanova I.O., Lakeev S.N., Ishalina O.V., Nikitina A.P. // Russ. J. Appl. Chem. 2020. V. 93. N 12. P. 1883-1887. DOI: 10.31857/S0044461820120105.
Plotnikova R.N. // Vestn. Voronezh. Gos. Un-ta Inzh. Tekhnol. 2021.V. 83. N 1. P.290-296 (in Russian). DOI: 10.20914/2310-1202-2021-1-290-296.
Chirkov D.D., Kulazhenko Yu.M., Biktimirova O.E., Shkuro A.E., Glukhikh V.V. // Vest. Tekhnol. Univ. 2023. V. 26. N 10. P. 69-74 (in Russian). DOI: 10.55421/1998-7072-2023-26-10-69.
Krivonogov P.S. // Vest. Tekhnol. Univ. 2022. V. 2. N 3. P. 51-56 (in Russian). DOI: 10.55421/1998-7072-2022-25-3-51.
Plotnikova R.N., Popova L.V., Studenikina L.N. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 102-109 (in Russian). DOI: 10.6060/ivkkt.20236605.6790.
Fomina D.L., Mazina L.A., Deberdeev T.R., Ulitin N.V., Nechaev R.R. // Vest. Tekhnol. Univ. 2012. V. 15. N 18. P. 107-109 (in Russian).
Martynov A.V., Mazina L.A., Klyuchnikov O.R. // Vest. Tekhnol. Univ. 2016. V. 19. N 15. P. 73-75 (in Russian).
Islamov A.M., Suchkova E.A., Mursalimova D.R., Va-lieva D.M. // Vest. Tekhnol. Univ. 2023. V. 26. N 6 P. 20-24 (in Russian). DOI: 10.55421/1998-7072-2023-26-6-20.
Dolgusheva M.A., Cherezova E.N. // Vest. Tekhnol. Univ. 2020. V. 23. N 8. P. 39- 41 (in Russian).
Cherezova E.N., Kiyanenko E.A. // Vest. Tekhnol. Univ. 2023. V. 26. N 1. P. 93-98 (in Russian). DOI: 10.55421/ 1998-7072-2023-26-1-93.
Fomina D.L., Mazina L.A., Deberdeev T.R., Akhmatchin E.S., Ulitin N.V. // Vest. Tekhnol. Univ. 2012. V. 15. N 18. P. 104-106 (in Russian).
GOST R 59707-2021 Polyvinyl chloride plastic compounds of reduced flammability for cable products.
Plotnikova R.N., Korchagin V.I., Popova L.V. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. Р. 87-93 (in Russian). DOI: 10.6060/ivkkt.20226505.6566.