USING POLYETHYLENE TEREPHTHALATE CHEMICAL PROCESSING PRODUCTS FOR BITUMEN MODIFICATION

  • Evgenia S. Shirokova Institute of Chemistry and Ecology
  • Mikhail A. Vokhmyanin Institute of Chemistry and Ecology
Keywords: polyethylene terephthalate, aminolysis, oligoesteramide, bitumen modification, adhesion

Abstract

Polyethylene terephthalate (PET) is one of the most widely used plastics in the world, whose mechanical and chemical recycling has been successfully mastered. Recently, PET chemical recicling products have attracted attention as potential additives to construction materials, including asphalt mixtures and concrete. The purpose of this research is to develop a way to chemically recycle PET waste to produce value-added products that can be used for bitumen modification. To achieve this goal, PET waste was subjected to an aminolysis reaction. The obtained terephthalic acid diamide underwent polycondensation in the melt obtaining oligoesteramide at different time of reaction. The structure of obtained products was confirmed through IR spectroscopy and viscosymetry. Bitumen BND 60/90 was modified by obtained oligoesteramides. The properties of the modified bitumens (per GOST 33137-2014, GOST 11506-73, GOST 18180-72, GOST 12801-98) demonstrated that the addition of oligoesteramides can increase ruting resistance, can expand the temperature operational range, and bitumen adhesion to minerals. Authors have established that the introduction of oligoesteramides does not cause any significant increase in the dynamic viscosity of bitumen (at 135 °C), which will help avoid technological difficulties when pumping bitumen. Also modified bitumenes have the resistance to thermal aging not lower than the base bitumen. It has been demonstrated that with an increase in the molecular weight of oligoesteramide and its content, both the shear resistance and adhesion of bitumen to the minerals increase, while the best adhesion is observed with crushed marble aggregate. Thus, the rational use of oligoesteramides prodused from PET waste be a promising way to solve environmental pollution problems, and opens up the possibility of obtaining products with high added value.

For citation:

Shirokova E.S., Vokhmyanin M.A. Using polyethylene terephthalate chemical processing products for bitumen modification. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 1. P. 93-100. DOI: 10.6060/ivkkt.20256801.7137.

References

Read J., Whiteoak D. The Shell Bitumen Handbook. London: Thomas Telford Ltd, 2003. 463 p.

Schaur A., Unterberger S.H., Lackner R. Impact of molecular structure of PP on thermo-rheological proper-ties of polymermodified bitumen. Constr. Build. Mater. 2021. V. 287. 122981. DOI: 10.1016/j.conbuildmat.2021.122981.

Mazumder M., Siddique A., Ahmed R., Lee S.-J., Lee M.-S. Rheological and Morphological Characterization of Styrene-Isoprene-Styrene (SIS) Modified Asphalt Binder. Adv. Civ. Eng. 2020. V. 2020. 8877371. DOI: 10.1155/2020/8877371.

Tang N., Huang W., Hao G. Effect of aging on morphology, rheology, and chemical properties of highly polymer modified asphalt binders. Constr. Build. Mater. 2021. V. 281. 122595. DOI: 10.1016/j.conbuildmat.2021.122595.

Zhang F., Hu C., Zhang Y. Research for SEBS/PPA compound-modified asphalt. J. Appl. Polym. Sci. 2018. V. 135. N 14. 46085. DOI: 10.1002/app.46085.

Attaelmanan M., Feng Ch.P., Al-Hadidy A.I. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr. Build. Mater. 2011. V. 25. N 5. P. 2764-2770. DOI: 10.1016/j.conbuildmat.2010.12.037.

Stepanovich Yu.A., Shrubok A.O. Influence of polyethylene additives on the structure and properties SBS-modified bitumens. Tr. BGTU. Ser. 2, Khim. Tekhnol. Biotekhnol., Geoekologiya. 2022. N 2 (259). P. 49-55 (in Russian). DOI: 10.52065/2520-2669-2022-259-2-49-55.

Yan K., Hong Z., You L., Ou J., Miljković M. Influence of ethylenevinyl acetate on the performance improve-ments of low-density polyethylene-modified bitumen. J. Cleaner Prod. 2021. V. 278. 123865. DOI: 10.1016/j.jclepro.2020.123865.

Gokhman L.M., Gurari E.M., Davydova A.R., Davydova K.I. Highways. Polymer-bitumen binders based on SBS for road construction: a review. I. 4-2002. Bib standard. doc. (in Russian). URL: https://files.stroyinf.ru/Data1/56/56236/?ysclid=ls07eim 2o5917686385.

Guvalov A.A., Mamedov A.D., Kakhramanov N.T. Effect of modificators on the properties of bitumen and asphalt concrete. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 10. P. 98-104 (in Russian). DOI: 10.6060/ivkkt.20216410.6383.

Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017. V. 3. N 7. DOI: 10.1126/sciadv.1700782.

Rouch D.A. Plastic future: How to reduce the increasing environmental footprint of plastic packaging. 2024. Working Paper N 11. Clarendon Policy & Strategy Group, Melbourne, Australia.

Kuzin I.A., Vasilev A.N., Menshikov V.V. Analysis of the market of secondary polymeric raw materials. Usp.Khim. Khim. Tekhnol. V. 31. N 15. P. 54-55 (in Rus-sian).

Jagadeesh P., Rangappa S.M., Siengchin S., Puttegowda M., Thiagamani S.M.K., Rajeshkumar G., Kumar M.H., Oladijo O.P., Fiore V., Moure Cuadrado M.M. Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art. Polym. Compos. 2022. V. 43. N 9. P. 5831-5862. DOI: 10.1002/pc.27000.

Oladele I.O., Okoro C.J., Taiwo A.S., Onuh L.N., Agbeboh N.I., Balogun O.P., Olubambi P.A., Lephuthing S.S. Modern trends in recycling waste thermoplastics and their prospective applications: a review. J. Compos. Sci. 2023. V. 7. N 5. 198. DOI: 10.3390/jcs7050198.

Ma Y., Zhou H., Xi J., Polaczyk P., Xiao R., Zhang M., Baoshan H. The utilization of waste plastics in asphalt pavements: A review. Cleaner Mater. 2021. V. 2. 100031. DOI: 10.1016/j.clema.2021.100031.

You L., Long Z., You Z., Ge D., Yang X., Xu F., Hashemi M., Diab A. Review of recycling waste plastics in asphalt paving materials. J. Traffic Transp. Eng. (Eng. ed). 2022. V. 9. N 5. P. 742-764. DOI: 10.1016/j.jtte.2022.07.002.

Okhotnikova E.S., Ganeeva Yu.M., Frolov I.N., Firsin A.A., Timirgalieva A.Kh. The use of secondary polyole-fins for the modification of bitumen. Proceedings. Khim. Khim. Tekhnol. XXI veke : XIX International conference of students and young scientists named after Professor L.P. Kulev, 21-24 May 2018. Tomsk: TPU, 2018. P. 453-454 (in Russian).

Korneichuk N.S., Lesquin A.I., Rakhimova N.А. Polymer-bitumen binder on the basis of recycled polypropyl-ene for production of asphalt mixes. Inzhener. Vestn. Dona. 2017. N 2 (45). (in Russian). URL: ivdon.ru/ru/magazine/archive/n2y2017/4240.

Lesik E.I., Kositcyna S.S., Safin V.A., Buryukin F.A. Bitumens modified with polyolefins and products of their thermolysis. Yuzno-Sibir. Nauch. Vestn. 2023. N 2 (48). P. 139-145 (in Russian). DOI: 10.25699/SSSB.2023.48.2.015.

Glagoleva O.F., Inozemtsev K.A, Belokon N.Y., Mar-kova I.V. Investigation of the aging of bitumen mixtures with atactic polypropylene. Proceedings of the scientific and practical conference dedicated to the 50th anniver-sary of the formation of the bitumen laboratory of Gubkin Russian State University of Oil and Gas. Moscow. 2013. P. 44-46 (in Russian).

Gokhman L.M., Shemonaeva D.S., Stepanyan I.V., Titova E.N. The use of atactic polypropylene to improve the properties of bitumen and asphalt concrete. Avtomob. Dorogi. 1990. N 8. P. 11-13 (in Russian).

Mashaan N.S., Chegenizadeh A., Nikraz H., Rezag-holilou A. Investigating the engineering properties of as-phalt binder modified with waste plastic polymer. Ain Shams Eng. J. 2021. V. 12. N 2. P. 1569-1574. DOI: 10.1016/j.asej.2020.08.035.

Mashaan N.S., Chegenizadeh A., Nikraz H. Performance of PET and nano-silica modified stone mastic as-phalt mixtures. Case Stud. Constr. Mater. 2022. V. 16. e01044. DOI: 10.1016/j.cscm.2022.e01044.

Saleh H.A., Al Allam M.A. Evaluation of the Mechanical Properties of Asphalt Mixture Modified with RPET. Uni-vers. J. Eng. Sci. 2019. V. 7. N 2. P. 27-31. DOI: 10.13189/ujes.2019.070201.

Usman I.U., Kunlin M. Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review. Constr. Build. Mater. 2024. V. 411. 134439. DOI: 10.1016/j.conbuildmat.2023.134439.

Wypych G. Handbook of polymers. Toronto: ChemTec Publ. 2012. 680 p.

Agha N., Hussain A., Ali A.S., Qiu Y. Performance evaluation of Hot Mix Asphalt (HMA) containing Poly-ethylene Terephthalate (PET) using wet and dry mixing techniques. Polymers. 2023. V. 15. N 5. 1211. DOI: 10.3390/polym15051211.

Ahmad M.S., Ahmad S.A. The impact of polyethylene terephthalate waste on different bituminous designs. J. Eng. Appl. Sci. 2022. V. 69. 53. DOI: 10.1186/s44147-022-00104-5.

Choudhary R., Kumar A., Murkute K. Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: dependence on PET size, PET content, and mixing process. Period. Polytech. Civ. Eng. 2018. V. 62. N 3. P. 685-693. DOI: 10.3311/PPci.10797.

Mersha D.A., Gesese T.N., Sendekie Z.B., Admase A.T., Bezie A.J. Operating conditions, products and sus-tainable recycling routes of aminolysis of polyethylene terephthalate (PET) – a review. Polym. Bull. 2024. V. 81. P. 11563-11579. DOI: 10.1007/s00289-024-05259-0.

Teotia M., Tarannum N., Soni R.K. Depolymerization of PET waste to potentially applicable aromatic amides: Their characterization and DFT study. J. Appl. Polym. Sci. 2017. V. 134. Is. 31. 45153. DOI:10.1002/app.45153.

Conroy S., Zhang X. Theoretical insights into chemical recycling of polyethylene terephthalate (PET). Polym. Degrad. Stab. 2024. V. 233. 110729. DOI: 10.1016/j.polymdegradstab.2024.110729.

Li R., Leng Z., Yang J., Lu G., Huang M., Lan J., Zhang H., Bai Y., Dong Z. Innovative application of waste polyethylene terephthalate (PET) derived additive as an antistripping agent for asphalt mixture: Experi-mental investigation and molecular dynamics simulation. Fuel. 2021. V. 300. 121015. DOI: 10.1016/j.fuel.2021.121015.

Xu X., Chen G., Wu Q., Leng Z., Chen X., Zhai Y., Tu Y., Peng C. Chemical upcycling of waste PET into sus-tainable asphalt pavement containing recycled concrete aggregates: Insight into moisture-induced damage. Constr. Build. Mater. 2022. V. 360. 129632. DOI: 10.1016/j.conbuildmat.2022.129632.

Baradaran S., Rahimi J., Ameri M., Maleki A. Mechanical performance of asphalt mixture containing eco-friendly additive by recycling PET. Case Stud. Constr. Mater. 2024. V. 20. e02740. DOI: 10.1016/j.cscm.2023.e02740.

Vesnin R.L., Alalykin A.A., Vokhmyanin M.A. Polyethylene terephthalate waste recycling technology to produce terephthalic acid amide. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 2. P. 99-104 (in Russian). DOI: 10.6060/ivkkt.20206302.6055.

Ivkin A.S., Vasiliev V.V. Patterns of interaction of bitumen with mineral materials. Abstracts. High-tech func-tional materials technologies: VI International Scientific and Technical Conference. 09-11 October 2019. SPb.: GIKIT. 2019. P. 50-51 (in Russian).

Leoné N., Roy M., Saidi S., de Kort G., Hermida-Merino D., Wilsens C.H.R.M. Improving processing, crystallization, and performance of polyl-lactide with an amide-based organic compound as both plasticizer and nucleating agent. ACS Omega. 2019. V. 4. N 6. P. 10376-10387. DOI: 10.1021/acsomega.9b00848.

Altaf S., Teotia M., Soni R.K. Development of RP-HPLC–UV Technique for “N, N’-Disubstituted Tereph-thalamides”, the Depolymerized End Products of Polyethylene Terephthalate Waste. Chromatographia. 2024. V. 87. N 4. P. 215-226. DOI: 10.1007/s10337-024-04321-3.

Pretsch E., Bühlmann P., Affolter C. Structure determination of organic compounds. Tables of spectral data. М.: Mir, BINOM. Laboratoriya znaniy. 2006. 439 p. (in Russian).

Published
2024-11-28
How to Cite
Shirokova, E. S., & Vokhmyanin, M. A. (2024). USING POLYETHYLENE TEREPHTHALATE CHEMICAL PROCESSING PRODUCTS FOR BITUMEN MODIFICATION. ChemChemTech, 68(1), 93-100. https://doi.org/10.6060/ivkkt.20256801.7137
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)