DIAMOND VERTICAL PN SCHOTTKY DIODES WITH PRESISION NITROGEN-DOPED n- LAYER
Abstract
In this work, we carried out the experiments to optimize vertical Schottky pn diodes with a nitrogen concentration in the n- layer of <10 ppb by varying the boron concentration in the substrate and the layer thickness. Schottky pn diodes were manufactured, representing a boron-doped diamond substrate with a thickness of 250 – 300 μm and linear dimensions of 2.5 – 4 mm, obtained by the temperature gradient method at high pressure and temperature, on which a low nitrogen doped layer with a thickness of approximately 5 μm and a nitrogen concentration of ~1 – 10 ppb was deposited. The concentration of boron in the substrate varied from 2 to 100 ppm. The area of the electrical contacts was 6.25 mm2.We investigated the current-voltage and capacitance-voltage characteristics of the diodes. The volt-farad characteristics showed the independence of the capacitance of diodes on the locking voltage, which indicates a complete depletion of the drift layer of the diode. This confirms that these diodes are pn Schottky diodes. The maximum integral forward current value was limited by the substrate resistance and amounted to 0.1 A at 10 V, with a Schottky contact area of 6.25 mm2. This is significantly lower than the record characteristics of diamond Schottky diodes. In addition, a direct relationship between the concentration of boron in the grown layer and the concentration of boron in the substrate was revealed. Thus, it is concluded that in order to achieve the lowest possible concentrations of donor centers in the n- layer and to prevent their overcompensation by acceptors, it is necessary to use boron-doped substrates with a boron concentration of ~1017 cm-3.
For citation:
Timoshenko V.O., Prikhodko D.D., Tarelkin S.A., Kornilov N.V., Luparev N.V., Golovanov A.V. Diamond vertical pn Schottky diodes with presision nitrogen-doped n- layer. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 10. P. 73-79. DOI: 10.6060/ivkkt.20246710.11y.
References
Rouger N., Maréchal A. Design of Diamond Power Devic-es: Application to Schottky Barrier Diodes. Energies. 2019. V. 12. N 12. P. 2387. DOI: 10.3390/en12122387.
Umezawa H., Mokuno Y., Yamada H., Chayahara A., Shikata S. Characterization of Schottky Barrier Diodes on a 0.5-Inch Single-Crystalline CVD Diamond Wafer. Diam.Relat. Mater. 2010. V. 19. N 2–3. P. 208–212. DOI: 10.1016/j.diamond.2009.11.001.
Blank V.D., Bormashov V.S., Tarelkin S.A., Buga S.G., Kuznetsov M.S., Teteruk D.V., Kornilov N.V., Terentiev S.A., Volkov A.P. Power High-Voltage and Fast Response Schottky Barrier Diamond Diodes. Diam. Relat. Mater. 2015. N 57. P. 32–36. DOI: 10.1016/j.diamond.2015.01.005.
Kobayashi A., Ohmagari S., Umezawa H., Takeuchi D., Saito T. Suppression of Killer Defects in Diamond Vertical-Type Schottky Barrier Diodes. Jap. J. Appl. Phys. 2020. V. 59. N. SG. P. SGGD10. DOI: 10.7567/1347-4065/ab65b1.
Ohmagari S., Yamada H., Tsubouchi N., Umezawa H., Chayahara A., Seki A., Kawaii F., Saitoh H., Mokuno Y. Schottky Barrier Diodes Fabricated on Diamond Mosaic Wafers: Dislocation Reduction to Mitigate the Effect of Coalescence Boundaries. Appl. Phys. Lett. 2019. V. 114. N. 8. P. 082104. DOI: 10.1063/1.5085364.
Teraji T., Fiori A., Kiritani N., Tanimoto S., Gheeraert E., Koide Y. Mechanism of Reverse Current Increase of Vertical-Type Diamond Schottky Diodes. J. Appl. Phys. 2017. V. 122. N 13. P. 135304. DOI: 10.1063/1.4994570.
Fiori A., Teraji T., Koide Y. Diamond Schottky Diodes with Ideality Factors Close to 1. Appl. Phys. Lett. 2014. V. 105. N 13. P. 133515. DOI: 10.1063/1.4897315.
Buga S.G., Galkin A.S., Kuznetsov M.S., Kornilov N.V., Luparev N.V., Prikhodko D.D., Tarelkin S.A., Blank V.D. Doublelayer plates from synthetic diamond single-crystals doped with nitrogen for high-temperature n-type schottky diodes. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 11. P. 27–33 (in Russian). DOI: 10.6060/ivkkt.20226511.7y.
Volpe P. N., Muret P., Pernot J., Omnès F., Teraji T., Jomard F., Planson D., Brosselard P., Dheilly N., Vergne B., Scharnholtz S. High Breakdown Voltage Schottky Diodes Synthesized on P-Type CVD Diamond Layer. Phys. Status Solidi (a). 2010. V. 207. N 9. P. 2088–2092. DOI: 10.1002/ pssa.201000055.
Butler J. E., Geis M. W., Krohn K. E., Lawless J., Deneault S., Lyszczarz T. M., Flechtner D., Wright R. Ex-ceptionally High Voltage Schottky Diamond Diodes and Low Boron Doping. Semicond. Sci.Technol. 2003. V. 18. N 3. P. S67–S71. DOI: 10.1088/0268-1242/18/3/309.
Twitchen D. J., Whitehead A. J., Coe S. E., Isberg J., Hammersberg J., Wikstrom T., Johansson E. High-Voltage Single-Crystal Diamond Diodes. IEEE Transact. Electron Devices. 2004. V. 51. N 5. P. 826–828. DOI: 10.1109/TED.2004.826867.
Tarelkin S., Bormashov V., Buga S., Volkov A., Teteruk D., Kornilov N., Kuznetsov M., Terentiev S., Golovanov A., Blank V. Power Diamond Vertical Schottky Barrier Di-ode with 10 A Forward Current. Phys. Status Solidi (a). 2015. V. 212. N 11. P. 2621. DOI: 10.1002/pssa.201532213.
Makino T., Tanimoto S., Kato H., Tokuda N., Ogura M., Takeuchi D., Oyama K., Ohashi H., Okushi H., Yamasa-ki S. Diamond Schottky P-n Diode with High Forward Current Density. Phys. Status Solidi (a). 2009. V. 206. N 9. P. 2086–2090. DOI: 10.1002/pssa.200982228.
Makino T., Tanimoto S., Hayashi Y., Kato H., Tokuda N., Ogura M., Takeuchi D., Oyama K., Ohashi H., Oku-shi H., Yamasaki S. Diamond Schottky-Pn Diode with High Forward Current Density and Fast Switching Operation. Appl. Phys. Lett. 2009. V. 94. N 26. P. 262101. DOI: 10.1063/1.3159837.
Makino T., Kato H., Tokuda N., Ogura M., Takeuchi D., Oyama K., Tanimoto S., Okushi H., Yamasaki S. Dia-mond Schottky‐pn Diode without Trade‐off Relationship between Onresistance and Blocking Voltage. Phys. Status Solidi (a). 2010. V. 207. N 9. P. 2105–2109. DOI: 10.1002/ pssa.201000149.
Matsumoto T., Mukose T., Makino T., Takeuchi D., Yamasaki S., Inokuma T., Tokuda N. Diamond Schottky-Pn Diode Using Lightly Nitrogen-Doped Layer. Diam. Relat. Mater. 2017. V. 75. P. 152–154. DOI: 10.1016/j.diamond.2017.03.018.
Shikata S. Single Crystal Diamond Wafers for High Power Electronics. Diam. Relat. Mater. 2016. V. 65. P. 168–175. DOI: 10.1016/j.diamond.2016.03.013.
Achard J., Issaoui R., Tallaire A., Silva F., Barjon J., Jomard F., Gicquel A. Freestanding CVD Boron Doped Di-amond Single Crystals: A Substrate for Vertical Power Electronic Devices. Phys. Status Solidi (a). 2012. V. 209. N 9. P. 1651–1658. DOI: 10.1002/pssa.201200045.
Kubota A., Nagae S., Motoyama S., Touge M. Two-Step Polishing Technique for Single Crystal Diamond (100) Substrate Utilizing a Chemical Reaction with Iron Plate. Diam. Relat. Mater. 2015. V. 60. P. 75–80. DOI: 10.1016/j.diamond.2015.10.026.
Schroder D.K. Semiconductor Material and Device Characterization. IEEE Press. Wiley: Piscataway, NJ: Hoboken. 2006. 781 p. DOI: 10.1002/0471749095.
Makino T., Kato H., Takeuchi D., Ogura M., Okushi H., Yamasaki S. Device Design of Diamond Schottky-Pn Diode for Low-Loss Power Electronics. Jap. J. Appl. Phys. 2012. V. 51. N 9R. P. 090116. DOI: 10.1143/JJAP.51.090116.
Prikhodko D. D., Timoshenko V. O., Tarelkin S. A., Kuznetsov M. S., Luparev N. V., Blank V. D. Compensation ratio of acceptor centers in different growth sectors of boron-doped HPHT diamond. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 10. P. 38–43 (in Russian). DOI: 10.6060/ivkkt.20236610.7y.
Bormashov V.S., Tarelkin S.A., Buga S.G., Kuznetsov M.S., Terentiev S.A., Semenov A.N., Blank V.D. Electrical Properties of the High Quality Boron-Doped Synthetic Single-Crystal Diamonds Grown by the Temperature Gradient Method. Diam. Relat. Mater. 2013. V. 35. P. 19–23. DOI: 10.1016/j.diamond.2013.02.011.