PHYSICO-CHEMICAL STUDY OF THE BEHAVIOR OF A MULLITE PRECURSOR SYNTHESIZED WITH CO-PRECIPITATION
Abstract
The co-precipitation of hydrated forms of aluminum oxide and silica with the addition of ammonia has been studied. Thermal curves of a dried co-precipitated product showed that at low temperature (up to ~300 °C) there was a set of clearly defined endothermic peaks which resulted from dehydration of adsorbed and hydrated water. Then, a gradual removal of water was observed up to ~ 600 °C, which corresponded to the transition aluminum hydroxide Al(OH)3 → monohydrate (boehmite) γ-AlOOH. After it, the sample weight remained constant, and exothermic peaks were because of the spinel formation (about 900 °C) and the mullite crystallization from the spinel phase (above 1200 °C). After calcination at 900–1000 °C, the Al–Si spinel phase of γ-Al2O3 type was dominated, though some slight signs of crystalline mullite were already appeared. The high dispersion of hydrated alumina and silica particles determined their considerable reactivity. It resulted in the mullite appearance at a rather low temperature. Sharp peaks which concerned to single orthorhombic mullite were registered since 1150–1200 °C. At the same time, the spinel reflexes practically disappeared. The most intensive phase changes were in the range of 1100–1200 °C. The peak positions and intensity of calcined products agreed well with the reference data for mullite. Its lattice parameters were determined. The average crystallite size was ranged from 6.3 nm at 1100 °C to 7.4 nm at 1200 °C. The effective activation energy was calculated by non-isothermal method (Avrami equation) as (740 ± 40) kJ/mol. This magnitude was in a well accordance with the activation energy values for the diffusion of the Si4+ ions in the mullite layer which were estimated to range from 730 to 780 kJ/mol (literature data). So, one might assume that the limiting stage was just the diffusion of the Si4+ ions.
References
Schneider H., Komarneni S. Mullite. John Wiley & Sons. Weinheim. Germany. 2006. 509 p. DOI: 10.1002/3527607358.
Schneider H., Schreuer J., Hildmann B. Structure and properties of mullite – A review. J. Eur. Ceram. Soc. 2008. V. 28. N 2. P. 329–344. DOI: 10.1016/j.jeurceramsoc.2007.03.017.
Duval D.J., Risbud S.H., Shackelford J.F. Mullite, in: Ceramic and Glass Material. Springer. 2008. P. 27–39. DOI: 10.1007/978-0-387-73362-3_2.
Aryal S., Rulis P., Ching W. Mechanical properties and electronic structure of mullite phases using first‐principles modeling. J. Am. Ceram. Soc. 2012. V. 95. N 7. P. 2075–2088. DOI: 10.1111/j.1551-2916.2012.05172.x.
Malki M., Hoo Ch.M., Mecartney M. L., Schneider H., Wei W.‐C. J. Electrical Conductivity of Mullite Ceramics. J. Amer. Cer. Soc. 2014. V. 97. N 6. P. 1923-1930. DOI: 10.1111/jace.12867.
Zhang Ch., Jiang Y., Ma Y. Optical floating zone growth and dielectric constants of near-3:2mullite crystals. J. Eur. Cer. Soc. 2016. V. 36. N 3. P. 577–581. DOI: 10.1016/j.jeurceramsoc.2015.10.025.
Hirata Y., Shimonosono T., Itoh Sh., Kiritoshi Sh. Theoretical and experimental analyses of thermal properties of dense polycrystalline mullite. Ceramics Int. 2017. V. 43. N 13. P. 10410–10414. DOI: 10.1016/j.ceramint.2017.05.076.
Murshed M.M., Šehović M., Fischer M., Senyshyn A., Schneider H., Gesing Th.M. Thermal behavior of mullite between 4 K and 1320 K. J. Amer. Cer. Soc. 2017. V. 100. N 11. P. 5259-5273. DOI: 10.1111/jace.15028.
Krenzel Th.F., Schreuer J., Laubner D., Cichocki M., Schneider H. Thermo‐mechanical properties of mullite ce-ramics: New data. J. Amer. Cer. Soc. 2019. V. 102. N 1. P. 416–426. DOI: 10.1111/jace.15925.
Yu P.-Ch., Tsai Y.-W., Yen F.-S., Yang W.-P., Huang Ch.-Liang. Thermal characteristic difference between α-Al2O3 and cristobalite powders during mullite synthesis induced by size reduction. J. Eur. Cer. Soc. 2015. V. 35. N 2. P. 673-680. DOI: 10.1016/j.jeurceramsoc.2014.08.040.
Vargas F., Restrepo E., Rodríguez J.E., Vargas F., Arbeláez L., Caballero P., Arias J., López E., Latorre G., Duarte G. Solidstate synthesis of mullite from spent catalysts for manufacturing refractory brick coatings. Cer. Int. 2017. V. 44. N 4. P. 3556. DOI: 10.1016/j.ceramint.2017.11.044.
Yugeswaran S. Suresh K. Selvarajan V. Lusvarghi L. Karoly Z. Szépvölgyi J. Synthesis of mullite by means of transferred and nontransferred arc plasma melting. Mater. Manuf. Proc. 2010. V. 25. N 9. P. 909. DOI: 10.1080/10426910903536725.
Zhang J., Zhan H., Fu Zh., Todd R.I. Insitu synthesis and sintering of mullite glass composites by SPS. J. Adv. Cer. 2014. V. 3. N 2. P. 165. DOI: 10.1007/s40145-014-0108-y.
Ebadzadeh T., Sarrafi M.H., Salahi E. Microwave-assisted synthesis and sintering of mullite. Cer. Int. 2009. V. 35. N 8. P. 3175-3179. DOI: 10.1016/j.ceramint.2009.05.013.
Mizuno M., Saito H. Preparation of highly pure fine mullite powder. J. Amer. Cer. Soc. 2005. V. 72. N 3. P. 377-382. DOI: 10.1111/j.1151-2916.1989.tb06139.x.
Sanz J., Sobrados I., Cavalieri A.L., Pena P., Aza S. Moya J.S. Structural changes induced on mullite precursors by thermal treatment: A 27Al MAS‐NMR Investigation. J. Amer. Cer. Soc. 1991. V. 74. N 10. P. 2398-2403. DOI: 10.1111/j.1151-2916.1991.tb06775.x.
Zhu B.Q., Li X.D., Hao R., Wang H. Preparation of mullite powder by aluminum sulfate and silica in molten sodium sulfate. Key Eng. Mater. 2007. V. 336-338. P. 924-926. DOI: 10.4028/www.scientific.net/KEM.336-338.924.
Rajaei H., Mobasherpour I., Farvizi M., Zakeri M. Effect of mullite synthesis methods on the spark plasma sin-tering behaviour and mechanical properties. Micro Nano Lett. 2016. V. 11. N 8. P. 465-468. DOI: 10.1049/mnl.2016.0092.
Buljan I., Kosanović C., Kralj D. A novel synthesis of nano-sized mullite from aluminosilicate precursors. J. All. Comps. 2011. V. 509. N 32. P. 8256-8261. DOI: 10.1016/j.jallcom.2011.05.099.
Aschauer U., Burgos-Montes O., Moreno R., Bowen P. Hamaker 2: A toolkit for the calculation of particle interactions and suspension stability and its application to mullite synthesis by colloidal methods. J. Disp. Sci. Technol. 2011 V. 32. N 4. P. 470-479. DOI: 10.1080/01932691003756738.
Sanad M.M.S., Rashad M.M., Abdel-Aal E.A., El-Shahat M.F. Synthesis and characterization of nanocrystalline mullite powders at low annealing temperature using a new technique. J. Eur. Cer. Soc. 2012. V. 32. N 16. P. 4249-4255. DOI: 10.1016/j.jeurceramsoc.2012.07.014.
Sung Y.-M. Kinetics analysis of mullite formation reaction at high temperatures. Acta Mater. 2000. V. 4. N 9. P. 2157-2162. DOI: 10.1016/S1359-6454(00)00032-X.
Francis A., Vilminot S. Crystallisation kinetics of mullite glass-ceramics obtained from alumina–silica wastes. Int. J. Sustainable Eng. 2012. V. 6. N 1. P. 74-81. DOI: 10.1080/19397038.2012.672478.
Griggio F., Bernardo E., Colombo P., Messing G.L. Kinetic studies of mullite synthesis from alumina nanoparticles and a preceramic polymer. J. Amer. Cer. Soc. 2008. V. 91. N 8. P. 2529-2533. DOI: 10.1111/j.1551-2916.2008.02515.x.
Belhouchet H., Hamidouche M., Torrecillas R., Fantozzi G. The non-isothermal kinetics of mullite formation in boehmite–zircon mixtures. J. Therm. Anal. Calor. 2014. V. 116. N 2. P. 795-803. DOI: 10.1007/s10973-013-3601-6.
Okada K. Activation energy of mullitization from various starting materials. J. Eur. Cer. Soc. 2008. V. 28. N 2. P. 377-382. DOI: 10.1016/j.jeurceramsoc.2007.03.015.
Vieira S.C., Ramos A.S., Vieira M.T. Mullitization kinet-ics from silica- and aluminarich wastes. Cer. Int. 2007. V. 33. N 1. P. 59-66. DOI: 10.1016/j.ceramint.2005.07.015.
De Oliveira T.C., Ribeiro C.A., Brunelli D.D., Rodrigues L.A., Thim G.P. The kinetic of mullite crystallization: ef-fect of water content. J. Non-Cryst. Solids. 2010. V. 356. N 52-54. P. 2980-2985. DOI: 10.1016/j.jnoncrysol.2010.05.078.
Magliano M.V.M., Pandolfelli V.C. Mulitização em re-fratários utilizando diferentes fontes precursoras: revisão. Cerâmica. 2010. N 56. P. 368-375. DOI: 10.1590/S0366-69132010000400009.
Li D.X., Thomson W.J. Kinetic mechanisms for mullite formation from solgel precursors. J. Mater. Res. 1990. V. 5. P. 1963–1969. DOI: 10.1557/JMR.1990.1963.