РЕАКЦИОННАЯ СПОСОБНОСТЬ АЛЮМООКСИДНЫХ ПРЕКУРСОРОВ ДЛЯ ТВЕРДОФАЗНОГО ОБРАЗОВАНИЯ ШПИНЕЛИ MgAl2O4
Аннотация
Сопоставлена реакционная способность различных алюмооксидных прекурсоров в реакции образования магнезиальной шпинели: промышленного производства (корундового порошка КП (KP), глиноземов: металлургического ГК (GK), неметаллургического Г-00 (G-00), реактивного РГ (RG)) и продукта горения ксерогеля из нитрата алюминия с лимонной кислотой в условиях механоактивирующей обработки и без нее. Проанализированы ИК-спектры корунда и периклаза после механической обработки разного типа (ударно-истирающей в планетарной мельнице, истирания в шаро-кольцевой мельнице). Установлено, что кратковременное воздействие не только активировало компоненты, но и способствовало разрушению адсорбционных соединений на стадии подготовки. Проанализировано влияние механоактивации реагентов на выход шпинели. Установлено, что алюмооксидный продукт горения ксерогеля без отжига являлся рентгеноаморфным, что предполагало его высокую химическую активность. При его использовании обнаружено более полное связывание исходных реагентов в продукт по сравнению со смесью периклаза и корунда. Даже в отсутствие механоактивации компонентов удавалось достичь высокого выхода шпинели (до 80%). Полученные значения эффективных констант скорости реакции свидетельствуют о большей результативности механической обработки, включающей в себя ударную компоненту, при совместной активации периклаза и корунда/глинозема. Совместная обработка реагентов в планетарной мельнице (ПМ) позволила увеличить скорость реакции в 5-6,5 раз, тогда как истирание в шаро-кольцевой мельнице – всего в 1,7 раза. Предварительная обработка одного из компонентов исходной смеси в ПМ наиболее целесообразна для периклаза, поскольку она дала возможность ускорить реакцию в ~ 5 раз, а также наиболее выгодна энергетически и технологически из-за обработки только одного компонента пониженной твердости. Применение в синтезе шпинели продукта горения ксерогеля весьма эффективно, т.к. ускорило процесс в ~4 раза даже без предварительной активации механическим способом.
Для цитирования:
Филатова Н.В., Косенко Н.Ф., Артюшин А.С., Малоиван М.С., Зонина И.И., Власенков А.С. Реакционная способность алюмооксидных прекурсоров для твердофазного образования шпинели MgAl2O4. Изв. вузов. Химия и хим. технология. 2024. Т. 67. Вып. 12. С. 15-24. DOI: 10.6060/ivkkt.20246712.7152.
Литература
Obradović N., Filipović S, Fahrenholtz W.G., Marinkovic B.A., Rogan J., Lević S., Đorđević A., Pavlović V.B. Mor-phological and structural characterization of MgAl2O4 spinel. Sci. Sinter. 2023. V. 55. N 1. P. 1-10. DOI: 10.2298/SOS2301001O.
Chen Z., Yan W., Li G., Hong S., Li N. Enhanced mechanical properties of novel Al2O3-based ceramic filter by using microporous corundum-spinel and nano-Al2O3 powders. J. Eur. Ceram. Soc. 2024. V. 44. N 2. P. 1070-1080. DOI: 10.1016/j.jeurceramsoc.2023.10.004.
Gajdowski C., D’Elia R., Faderl N., Bohmler J., Lorgouilloux Y., Lemonnier S., Leriche A. Mechanical and op-tical properties of MgAl2O4 ceramics and ballistic efficiency of spinel based armour. Ceram. Int. 2022. V. 48. N 13. P. 18199−18211. DOI: 10.1016/j.ceramint.2022.03.079.
Baruah B., Bhattacharyya S., Sarkar R. Synthesis of magnesium aluminate spinel – An overview. Appl. Ceram. Technol. 2023. V. 20. N. 3. P. 1331-1349. DOI: 10.1111/ijac.14309.
Egorov S.V., BykovY.V., Eremeev A.G., Sorokin A.A., Serov E.A., Parshin V.V., Balabanov S.S., Belyaev A.V., Novikova A.V., Permin D.A. Milimiter-wavelength radiation used to sinter radiotransparent MgAl2O4 ceramics. Radiophys. Quantum Electron. 2017. V. 59. P. 690–697. DOI: 10.1007/ s11141-017-9736-8.
Fu L., Gu H., Huang A., Zhang M., Hong X., JinL. Possible improvements of alumina–magnesia castable by light-weight microporous aggregates. Ceram. Int. 2015. V. 41. P. 1263-1270. DOI: 10.1016/j.ceramint.2014.09.056.
Shahbazi H., Shokrollahi H., Alhaji A. Optimizing the gelcasting parameters in synthesis of MgAl2O4 spinel. J. Alloys Compd. 2017. V. 712. P. 732-741. DOI: 10.1016/j.jallcom.2017.04.042.
Zegadi A., Kolli M., Hamidouche M., Fantozzi G. Transparent MgAl2O4 spinel fabricated by spark plasma sintering from commercial powders. Ceram. Int. 2018. V. 44. P. 18828–18835. DOI:10.1016/j.ceramint.2018.07.117.
Peng W., Chen Z., Yan W., Schafföner S., Li G., Li Y., Jia C. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance. Construct. Build. Mater. 2021. V. 291. P. 123388. DOI: 10.1016/j.conbuildmat.2021.123388.
Obradović N., Fahrenholtz W.G., Filipović S., Corlett C., Đorđević P., Rogan J., VulićP. J., Buljak V., Pavlović V. Characterization of MgAl2O4 sintered ceramics. Sci. Sinter. 2019. V. 51. N 4. P. 363–376. DOI: 10.2298/SOS1904363O.
Zhou Y., Ye. D., Wu Y., Zhang Ch., Bai W., Tian Y., Qin M. Lowcost preparation and characterization of MgAl2O4 ceramics. Ceram. Int. 2022. V. 48.N. 5. P. 7316−7319. DOI: 10.1016/j.ceramint.2021.11.196.
Klaus S., Buhr A., Bauer M., Göbbels M., Dutton J. Formation of hexa-aluminate solid solution phases in spinel con-taining castables – Mineralogical investigations in the system CaO-Al2O3-MgO. 62nd International Colloquium on Refractories 2019 – Supplier Industries enabling REFRACTORIES. Aachen, Germany 25-26 September. 2019. P. 90-94.
Kaur P., Rani S. Effect of sintering temperature on structural and optical properties of magnesium aluminate spinel. J. Optics. 2023. V. 52. N 4. P. 2366-2374. DOI: 10.1007/s12596-023-01167-0.
Suresh M.B., Biswas P., Saha B.P., Johnson R. Fabrication of optically transparent MgAl2O4 polycrystalline ceramics and evaluation of high temperature dielectric, impedance spectroscopy & AC conductivity. J. Mater. Sci. Mater. Electron. 2023. V. 34. N 27. DOI: 10.1007/s10854-023-11315-8.
Feldbach E., Kudryavtseva I., Mizohata K., Prieditis G., Räisänen J., Shablonin E., Lushchik A. Optical characteristics of virgin and protonirradiated ceramics of magnesium aluminate spinel. Opt. Mater. 2019. V. 96. 109308. DOI:10.1016/j.optmat.2019.109308.
Talimian A., Pouchly V., El-Maghraby H. F., Maca K., Galusek D. Transparent magnesium aluminate spinel: Effect of critical temperature in two-stage spark plasma sintering. J. Eur. Ceram. Soc. 2020. V. 40. N 6. P. 2417–2425. DOI: 10.1016/j.jeurceramsoc.2020.02.012.
Salem S., Nouri B., Ghadiri M. Photoactivity of magnesium aluminate under solar irradiation for treatment of wastewater contaminated by methylene blue: Effect of self-combustion factors on spinel characteristics. Solar Energy Mater. Solar Cells. 2020. V. 218. P. 110773. DOI: 10.1016/j.solmat.2020.110773.
Asl E. A., Haghighi M., Talati A. Enhanced simulated sunlight-driven magnetic MgAl2O4-AC nanophotocatalyst for efficient degradation of organic dyes. Separat. Purificat. Tech-nol. 2020. V. 251. P. 117003. DOI: 10.1016/j.seppur.2020.117003.
Prieditis G., Feldbach E., Kudryavtseva I., Popov A. I., Shablonin E., Lushchik A. Luminescence characteristics of magnesium aluminate spinel crystals of different stoichiome-try. IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 503. P. 012021. DOI: 10.1088/1757-899x/503/1/012021.
Klym H., Ingram A., Shpotyuk O., Hadzaman I., Hotra O., Kostiv Yu. Nanostructural freevolume effects in humidi-ty-sensitive MgO–Al2O3 ceramics for sensor applications. J. Mater. Eng. Perform. 2016. V. 25. P. 866–873. DOI: 10.1007/s11665-016-1931-9.
Habibi N., Wang Y., Arandiyan H., Rezaei M. Effect of substitution by Ni in MgAl2O4 spinel for biogas dry reforming. Int. J. Hydrog. Energy. 2017. V. 42. N 38. P. 24159–24168. DOI: 10.1016/j.ijhydene.2017.07.222.
Tang C., Zhai Z., Li X., Sun L., Bai W. Sustainable pro-duction of acetaldehyde from lactic acid over the magnesium aluminate spinel. J. Taiwan Inst. Chem. Eng. 2015. V. 58. P. 97-106. DOI: 10.1016/j.jtice.2015.06.014.
Singh A.K., Sarkar R. Development of spinel sol bonded high pure alumina castable composition. Ceram. Int. 2016. V. 42. N 15. P. 17410–17419. DOI: 10.1016/j.ceramint.2016.08.041.
Ikonnikova O.P., Popova N.A. Silicon carbide ceramics bonded with alumina-magnesia spinel. Usp. Khim. Khim. Tekhnol. 2018. V. XXXII. N 2. P. 83-85 (in Russian).
Kosenko N.F., Smirnova M.A. Synthesis of magnesia-aluminate spinel from oxides with different histories. Ogneupory Tekhnich. Keram. 2011. N 9. P. 3-11 (in Russian).
Kafili G., Alhaji A. The effects of different precipitant agents on the formation of alumina-magnesia composite powders as the magnesium aluminate spinel precursor. Adv. Powder Technol. 2019. V. 30. P. 1108-1115. DOI: 10.1016/j.apt.2019.03.007.
Nam S., Lee M., Kim B.-N., Lee Y., Kang S. Morphology controlled Coprecipitation method for nano structured transparent MgAl2O4. Ceram. Int. 2017. V. 43. N 17. P. 15352–1535. DOI: 10.1016/j.ceramint.2017.08.075.
Zhurba E.V., Lemeshev D.O., Popova N.A. Precursor of alumina-magnesia spinel obtained by reverse heterophase coprecipitation for transparent ceramics. Usp. Khim. Khim. Tekhnol. 2016. V. XXX. N 7. P. 39-40 (in Russian).
Viswanathan T., Pal S., Rahaman A. Synthesis of magnesium aluminate spinel nanocrystallites by co-precipitation as function of pH and temperature. Sādhanā. 2020. V. 45. P. 17. DOI: 10.1007/s12046-020-1265-z.
Sanjabi S., Obeydavi A. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol–gel method. J. Alloys Compd. 2015. V. 645. P. 535-540. DOI: 10.1016/j.jallcom.2015.05.107.
Wen Y., Liu X., Chen X., Jia Q., Yu R., Ma T. Effect of heat treatment conditions on the growth of MgAl2O4 nanoparticles obtained by sol-gel method. Ceram. Int. 2017. V. 43. P. 15246-15253. DOI: 10.1016/j.ceramint.2017.08.061.
Edrees S.J., Kareem S.J., Fadel A.M. Morphological characterzations of spinel nanoparticles synthesized by sol-gel method. J. Phys. Conf. Ser. 2021. V. 1973. P. 012132. DOI: 10.1088/1742-6596/1973/1/012132.
Habibi N., Wang Y., Arandiyan H., Rezaei M. Low-temperature synthesis of mesoporous nanocrystalline magne-sium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv. Powder Technol. 2017. V. 28. P. 1249–1257. DOI: 10.1016/j.apt.2017.02.012.
Khomidov F., Kadyrova Z., Usmanov K.L., Niyazova S.M., Sabirov B. Peculiarities of sol-gel synthesis of alumi-num-magnesium spinel. Glass Ceram. 2021. V. 78. P. 251–254. DOI: 10.1007/s10717-021-00389-7.
Jiang F., Feng G., Xu C., Qing S., Wu Q., Yu Y., Zhang Q., Jiang W. Novel facile nonhydrolytic sol-gel synthesis of MgAl2O4 nanocrystal from bimetallic alkoxides. J. Sol−Gel Sci. Technol. 2021. N 100. P. 555−561. DOI: 10.1007/s10971-021-05663-2.
Valente J. S., Rodriguez-Gattorno G., Valle-Orta M., Torres-Garsia E. Thermal decomposition kinetics of MgAl layered double hydroxides. Mater. Chem. Phys. 2012. V. 133. P. 621-629. DOI: 10.1016/j.matchemphys.2012.01.026.
Rahmat N., Yaakob Z., Pudukudy M., Rahman N.A., Jahaya S.S. Single step solid-state fusion for MgAl2O4 spi-nel synthesis and its influence on the structural and textural properties. Powder Technol. 2018. V. 329. P. 409-419. DOI: 10.1016/j.powtec.2018.02.007.
Vahid B.R., Haghighi M., Toghiani J., Alaei S. Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production. Energy Convers. Manag. 2018. V. 160. P. 220-229. DOI: 10.1016/j.enconman.2018.01.030.
Radishevskaya N.I., Lepakova O.K., Nazarova A.Yu., Kitler V.D., Gabbasov R.M., Minin R.V. Characteristics of phase formation during combustion of the MgO-Al2O3-Mg(NO3)2·6H2O-Al-B system. Ceram. Int. 2022. V. 48. N 10. P. 13948-13959. DOI: 10.1016/j.ceramint.2022.01.279.
Nassar M.Y., Ahmed I. S., Samir I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using solgel auto combustion method and their photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014. V. 131. P. 329–334. DOI: 10.1016/j.saa.2014.04.040.
Ganesh I., Srinivas B., Johnson R., Saha B.P., Mahajan Y.R. Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders. Br. Ceram. Trans. 2002. V. 101. N 6. P. 247-254. DOI: 10.1179/096797802225004063.
Mukherjee S., Ghosh S.R., Banerjee S. Evolution of Magnesium Aluminate Spinel by Combustion route and its characterization. 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE). Kolkata. India. 2020. P. 65-67. DOI: 10.1109/ICCE50343.2020.9290571.
Balalizadeh H., Abbasian A.R., Afarani M.Sh. Preparation of pure cordierite through heat treatment of combustion synthesized magnesium aluminate spinel and silica nanoparticles. J. Part. Sci. Technol. 2023. V. 9. N 1. P. 11-18. DOI: 10.22104/jpst.2023.6295.1229.
Özdemiṙ H., Öksüzomer M.A.F. Synthesis of Al2O3, MgO and MgAl2O4 by solution combustion method and investigation of performances in partial oxidation of methane. Powder Technol. 2020. V. 359. P. 107−117. DOI: 10.1016/j.powtec.2019.10.001.
Radishevskaya N.I., Nazarova A.Yu., L’vov O.V., Kasatskii N.G., Salamatov V.G., Saikov I.V., Kovalev D.Yu. Self-propagating high-temperature synthesis of MgAl2O4 spinel. Inorg. Mater. 2020. V. 56. N 2. P. 142-150. DOI: 10.1134/S0020168520010112.
Wang Y., Xie X., Zhu C. Selfpropagating high-temperature synthesis of magnesium aluminate spinel using Mg−Al alloy. ACS Omega. 2022. V. 7. P. 12617−12623. DOI: 10.1021/acsomega.1c06583.
Tran A., TranV., Nguyet N.T.M., Luong A.T., Le T.V., Phuc N.H.H. Solid-State Reaction Synthesis of MgAl2O4 Spinel from MgO–Al2O3 Composite Particles Prepared via Electrostatic Adsorption. ACS Omega. 2023. V. 8. P. 36253−36260. DOI: 10.1021/acsomega.3c04782.
Sun X., Jiang X., Shan Y., Han X., Xu J., Li J. Low tem-perature solid reaction synthesis of high sinter ability MgAl2O4 powder from γ-Al2O3+MgO and θ/α-Al2O3+MgO batches. Ceram. Int. 2022. V. 48. P. 17471−17480. DOI: 10.1016/j.ceramint.2022.03.011.
Sarkar R., Sahoo S. Effect of raw materials on formation and densification of magnesium aluminate spinel. Ceram. Int. 2014. V. 40. P. 16719–16725. DOI: 10.1016/j.ceramint.2014.08.037.
Gumennikova E.A., Titov D.D., Lysenkov A.S., Frolova M.G., Kargin Yu.F., Shcherbakova G.I. Novokovskaya E.A. Rheological properties of MgAl2O4 obtained from preceramic organomagnesiumoxanealumoxanes. J. Phys.: Conf. Ser. 2019. V. 1347. N 1. P. 012062. DOI: 10.1088/1742-6596/1347/1/012062.
Yan W., Lin X.L., Chen J.F., Li N., Wei Y.W., Han B.Q. Effect of TiO2 addition on microstructure and strength of po-rous spinel (MgAl2O4) ceramics prepared from magnesite and Al(OH)3. J. Alloys Compd. 2015. V. 618. P. 287-291. DOI: 10.1016/j.jallcom.2014.08.169.
Miroliaee A., Salehirad A., Rezvani A.R. Synthesis of high-surface-area spinel-type MgAl2O4 nanoparticles by [Al(sal)2(H2O)2]2 [Mg(dipic)2] and [Mg(H2O)6][Al(ox)2(H2O)2]2· ·5H2O: influence of inorganic precursor type. Bull. Mater. Sci. 2017. V. 40. P. 45–53. DOI: 10.1007/s12034-016-1353-1.
Macaigne R., Marinel S., Goeuriot D., Saunier S. Sintering paths and mechanisms of pure MgAl2O4 conventionally and microwave sintered. Ceram. Int. 2018. V. 44. P. 21107–21113. DOI: 10.1016/j.ceramint.2018.08.149.
Li R., Liu J. Effect of reaction time on the synthesis and sintering of magnesium-aluminium spinel by microwave hydro-thermal synthesis. Transact. Indian Ceram. Soc. 2021. V. 80. N 4. P. 265-269. DOI: 10.1080/0371750X.2021.2014637.
Kosenko N.F., Filatova N.V., Egorova A.A. Magnesiochromite (MgCr2O4) synthesis: effect of mechanical and microwave pretreatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 8. P. 96-102. DOI: 10.6060/ivkkt.20206308.6214.
Abdi M. S., Ebadzadeh T., Ghaffari A., Feli M. Synthesis of nano-sized spinel (MgAl2O4) from short mechanochemically activated chloride precursors and its sintering behavior. Adv. Powder Technol. 2015. V. 26. P. 175-179. DOI: 10.1016/j.apt.2014.09.011.
Tavangarian F., Li G. Mechanical activation assisted synthesis of nanostructure MgAl2O4 from gibbsite and lansfordite. Powder Technol. 2014. V. 267. P. 333–338. DOI: 10.1016/j.powtec.2014.08.003.
Liu J., Lv X., Li J., Zeng X., Xu Z., Zhang, Jiang L. Influence of Parameters of high-energy ball milling on the synthesis and densification of magnesium aluminate spinel. Sci. Sinter. 2016. V. 48. P. 353-362. DOI: 10.2298/SOS1603353L.
Obradovic N., Fahrenholtz W. G., Filipovic S., Markovic S., Blagojevic V., Levic S., Savic S., Djordjevic A., Pav-lovic V. Formation kinetics and cation inversion in mechanically activated MgAl2O4 spinel ceramics. J. Thermal Anal. Calorim. 2020. V. 140. P. 95–107. DOI: 10.1007/s10973-019-08846-w.
Kosenko N.F., Smirnova M.A. Evaluation of the effectiveness of mechanical processing of aluminum oxide based on thermochemical data. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2008. V. 51. N 10. P. 122-124 (in Russian).
Kosenko N.F., Filatova N.V. Regulating the sinterability of magnesium oxide using various types of mechanochemical treatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2009. V. 52. N 9. P. 80-84.
Filatova N.V., Kosenko N.F., Badanov M.A. Physico-chemical study of the behavior of a mullite precursor synthesized with coprecipitation. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 11. P. 97-102. DOI:10.6060/ivkkt.20216411.6478.