THE PHYSICOCHEMICAL INVESTIGATION OF THE ZHURAVLINY LOG KAOLIN. PART 1

  • Natalya V. Filatova Ivanovo State University of Chemistry and Technology
  • Nadezhda F. Kosenko Ivanovo State University of Chemistry and Technology
  • Olga P. Denisova Ivanovo State University of Chemistry and Technology
  • Ksenia S. Sadkova Ivanovo State University of Chemistry and Technology
Keywords: kaolin, kaolinite, Zhuravliny Log, clay minerals, metakaolin, mullite, phase transformation, import substitution

Abstract

The considerable portion of kaolin used in Russia was imported from Ukraine. There is urgent necessity to assume the measures for the import substitution in consideration of the presence of suitable deposits. The Zhuravliny Log kaolin deposit (Chelyabinsky district, Russia) is the largest one (more than sixty million tons of assured resources of the primary kaolin) in Russia. The chemical and phase composition of the concentrated kaolin was determined. The SiO2/Al2O3 ratio made 1.30. The free quartz quantity was equal to 4.4%. CaO and mica were not revealed. Kaolin powders were fine-dispersed (mainly up to 2 μm). In his paper, the thermal behavior of this kaolin was studied by the complex thermal analysis, X-ray diffractometry, and Fourier transform infrared spectroscopy. It was shown that the dehydroxylation occurred at appr. 500 °С. Further, at 910 °С metakaolinite probably turned into silica spinel. The absence of a peak at appr. 250–300 °C implies the absence of the free gibbsite Al(OH)3 or goethite FeOOH. By size of reflexes in the range of 2θ 20–22° it was estimated the Hinckley index (HI) as the structure order indicator: HI made 1.76 that indicated rather high degree of order. After a heat treatment at 400 °С index reduced to 1.69. Crystallite size along the c-axis amounted 61.5 nm. Mullite was the main phase at 1200 °С.

For citation:

Filatova N.V., Kosenko N.F., Denisova O.P., Sadkova K.S. The physicochemical investigation of the Zhuravliny Log kaolin. Part 1. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 8. P. 85-93. DOI: 10.6060/ivkkt.20226508.6656.

References

Fierascu I., Baroi A.M., Brazdis R.I., Fistos T., Nicolae C.A., Raditoiu V., Inel I.C., Sava V., Fierascu R.C. Ar-chaeometrical Characterization of Romanian Late Bronze Age Ceramic Fragments. Front. Mater. 2021. V. 8. Art. 630137. DOI: 10.3389/fmats.2021.630137.

Murray H.H. Applied clay mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite, Sepiolite, and Common Clays. Elsevier. 2007. 189 p. DOI: 10.1016/S1572-4352(06)02008-3.

Boudchicha M.R., Rubio F., Achour S. Synthesis of glass ceramics from kaolin and dolomite mixture. Int. J. Miner., Metall., Mater. 2017. V. 24. P. 194–201. DOI: 10.1007/s12613-017-1395-4.

Usman J., Othman M.H.D., Ismail A.F., Rahman M.A., Jaafar J., Abdullahi T. Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian J. Fund. Appl. Sci. 2020. V. 16. N 2. P. 182-185. DOI: 10.11113/mjfas.v16n2.1484.

Mocciaro A.,·Conconi M.S., Rendtorff N.M., Scian A.N. Ceramic properties of kaolinitic clay with monoaluminum phosphate (Al(H2PO4)3) addition. J. Therm. Anal. Calorim. 2021. V. 144. N 4. P. 1083–1093. DOI: 10.1007/s10973-020-10488-2.

Yang X., Yang W., Hu J. Preparation of Low-Dielectric-Constant Kaolin Clay Ceramics by Chemical Cleaning Method. Front. Mater. 2021. V. 8. Art. 692759. DOI: 10.3389/fmats.2021.692759.

Ahmed N.M. Comparative study on the role of kaolin, cal-cined kaolin and chemically treated kaolin in alkyd-based paints for protection of steel. Pigment Resin Technol. 2013. V. 42. N 1. P. 3–14. DOI: 10.1108/03699421311288715.

Frías M., Rodríguez O., De Rojas M.S. Paper sludge, an environmentally sound alternative source of MK-based cementitious materials. A review. Construct. Build. Mater. 2015. V. 74. P. 37–48. DOI: 10.1016/j.conbuildmat.2014.10.007.

Gordina N.E. Mechanochemical activation as method of intensifying synthesis processes of low-modulus zeolites. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 7. P. 4-22 (in Russian). DOI: 10.6060/ivkkt.20186107.5687.

Gordina N.E., Prokof`ev V.Yu., Borisova T.N., Elizarova A.M. Synthesis of granular low-modulus zeolites from metakaolin using mechanochemical activation and ultrasonic treatment. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 7. P. 99-106 (in Russian). DOI: 10.6060/ivkkt201962fp.5725.

Mocciaro A., Lombardi M.B., Scian A.N. Effect of raw material milling on ceramic proppants properties. Appl. Clay Sci. 2018. V. 153. P. 90-94. DOI: 10.1016/j.clay.2017.12.009.

Bewa C.N., Tchakoute H.K., Banenzoue C., Cakanou L., Mbakop T.T., Kamseu E., Ruscher C.H. Acidbased geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 2020. V. 198. 105813. DOI: 10.1016/j.clay.2020.105813Get.

Jindal B.B., Alomayri T., Hasan A., Kaze C.R. Geopolymer concrete with metakaolin for sustainability: a compre-hensive review on raw material's properties, synthesis, performance, and potential application. Environ. Sci. Pollut. Res. 2022. Jan 9. DOI: 10.1007/s11356-021-17849-w.

Liu X., Jiang J., Zhang H., Li M., Wu Y., Guo L., Wang W., Duan P., Zhang W., Zhang Z. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Appl. Clay Sci. 2020. V. 196. 105769. DOI: 10.1016/j.clay.2020.105769.

Jia D., He P., Wang M., Yan Sh. Geopolymer and Geopolymer Matrix Composites. Springer Nature Singapore Pte Ltd. 2020. 310 p. DOI: 10.1007/978-981-15-9536-3.

Khairy M., Ayoub H.A., Rashwan F.A., Abdel-Hafez H.F. Chemical modification of commercial kaolin for mitigation of organic pollutants in environment via adsorption and generation of inorganic pesticides. Appl. Clay Sci. 2018. V. 153. P. 124–133. DOI: 10.1016/j.clay.2017.12.014.

Mustapha S., Tijani J.O., Ndamitso M.M., Abdulkareem S.A., Shuaib D.T., Mohammed A.K., Sumaila A. The role of kaolin and kaolin/ZnО nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep. 2020. V. 10. P. 13068. DOI: 10.1038/s41598-020-69808-z.

Zhang Q., Yan Z., Ouyang J., Zhang Y., Yang H., Chen D. Chemically modified kaolinite nanolayers for the removal of organic pollutants. Appl. Clay Sci. 2018. V. 157. P. 283–290. DOI: 10.1016/j.clay.2018.03.009.

Faghih S., Zamani Z., Fatahi R., Omidi M. Influence of kaolin application on most important fruit and leaf characteristics of two apple cultivars under sustained deficit irrigation. Biolog. Res. 2021. V. 54. N 1. DOI: 10.1186/s40659-020-00325-z.

Kumar S. Kaolin Market Size, Share & Trends Analysis Report by Application (Ceramics, Plastic, Pharmaceuticals & Medical, Paint & Coatings, Cosmetics, Fiber Glass, Paper, Rubber), by Region, and Segment Forecasts, 2019–2025. Res. Market. 2019. DOI: 10.1016/j.focat.2019.06.012.

Rackstraw P. Positive outlook for kaolin in ceramics. Indust. Minerals. 2019. N 609. P. 28-32.

Badr M.S.H., Yuan Sh., Dong J., El-Shall H., Bermudez Y.A., Ortega D.C., Lopez-Rendon J.E., Moudgil B.M. The Properties of Kaolin from Different Locations and Their Impact on Casting Rate. KONA Powder Part. J. 2020. V. 38. P. 251-259. DOI: 10.14356/kona.2021002.

Cheng Y., Xing J., Bu Ch., Zhang J., Piao G., Huang Y., Xie H., Wang X. Dehydroxylation and Structural Distortion of Kaolinite as a High-Temperature Sorbent in the Furnace. Minerals. 2019. V. 9. N 10. P. 587. DOI: 10.3390/min9100587.

Tchanang G., Djangang Ch.N., Abi C.F., Moukouri D.L.M., Blanchart Ph. Synthesis of reactive silica from ka-olinitic clay: Effect of process parameters. Appl. Clay Sci. 2021. V. 207. P. 106087. DOI: 10.1016/j.clay.2021.106087.

Yan K., Guo Y., Fang L., Cui L., Cheng F., Li T. Decomposition and phase transformation mechanism of kaolin-ite calcined with sodium carbonate. Appl. Clay Sci. 2017. V. 147. P. 90–96. DOI: 10.1016/j.clay.2017.07.010.

Xu X., Lao X., Wu J., Zhang Y., Xu X., Li K. Micro-structural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing. Appl. Clay Sci. 2015. V. 115. P. 76–86. DOI: 10.1016/j.clay.2015.07.031.

Ghorbel A., Fourati M., Bouaziz J. Microstructural evolution and phase transformation of different sintered Kaolins powder compacts. Mater. Chem. Phys. 2008. V. 112. N 3. P. 876–885. DOI: 10.1016/j.matchemphys.2008.06.047.

Sperinck Sh., Raiteri P., Marks N., Wright K. Dehydroxylation of Kaolinite to Metakaolin - A Molecular Dynamics Study. J. Mater. Chem. 2011 V. 21. N 7. P. 2118-2125. DOI: 10.1039/C0JM01748E.

Shimanskaya A.N., Dyatlova E.M., Popov R.Yu. Refractory Clay Raw Materials of Republic of Belarus for Production of the Porcelain Tile. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 12. P. 39-44 DOI: 10.6060/ivkkt.20196212.6018.

URL: http://kaolinzhl.ru/company/ (date of application: 20.02.2022).

Solodkiy N.F., Solodkaya M.N., ShamriKov A.S. Utilization of kaolin from 'Zhuravlinyj Log' deposit in production of fine ceramics. Ogneupory Tekhn. Keramika. 2000. N 5. P. 34-35.

Argynbaev T.M., Stafeeva Z.V., Belogub E.V. Deposit of Kaolins «Zhuravliny Log» - Complex Raw Materials for Manufacture of Building Materials. Stroit. Materialy. 2014. N 5. P. 68-71 (in Russian).

Li J., Lin H., Li J., Wu J. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite. J. Eur. Ceram. Soc. 2009. V. 29. N 14. P. 2929–2936. DOI: 10.1016/j.jeurceramsoc.2009.04.032.

Published
2022-07-06
How to Cite
Filatova, N. V., Kosenko, N. F., Denisova, O. P., & Sadkova, K. S. (2022). THE PHYSICOCHEMICAL INVESTIGATION OF THE ZHURAVLINY LOG KAOLIN. PART 1. ChemChemTech, 65(8), 85-93. https://doi.org/10.6060/ivkkt.20226508.6656
Section
CHEMICAL TECHNOLOGY (inorganic and organic substances. Theoretical fundamentals)

Most read articles by the same author(s)