SYNTHESIS AND SPECTRAL PROPERTIES OF PHTHALOCYANINES WITH 2,3,5-TRIMETHYLPHENOXY AND NITRO GROUPS

  • Ekaterina I. Demidova Ivanovo State University of Chemistry and Technology
  • Serafima A. Znoyko Ivanovo State University of Chemistry and Technology
  • Evgeny E. Molchanov Ivanovo State University of Chemistry and Technology https://orcid.org/0000-0002-5786-3734
  • Vladimir E. Maizlish Ivanovo State University of Chemistry and Technology https://orcid.org/0000-0001-5423-3297
  • Oleg A. Petrov Ivanovo State University of Chemistry and Technology https://orcid.org/0000-0003-3424-7135
Keywords: 2,3,5-trimethylphenol, phthalocyanines, synthesis, thermogravimetry, luminescence, acid-base properties

Abstract

Phthalonitrile containing a 2,3,5-trimethylphenol fragment and a nitro group at the periphery was synthesized on the basis of 4-bromo-5-nitrophthalonitrile. Tetrakis-2,9,16,24-(2,3,5-trimethylphenoxy)tetrakis-3,10,17,25-nitrophthalocyanine and its metallocomplexes with zinc and magnesium were synthesized on its basis by the "nitrile" method. The latter was used to obtain the corresponding phthalocyanine - ligand. All synthesized compounds were characterized by differential scanning calorimetry, elemental analysis, 1H NMR, infrared spectroscopy and MALDI-TOF spectrometry. Spectral-luminescent properties, as well as acid-base properties of the phthalocyanine - ligand, were studied for phthalocyanines. It was found that the compounds under consideration are thermally stable up to 300 °C. When studying the electronic absorption spectra, it was found that the nature of the complexing metal has virtually no effect on the position of the Q bands of the synthesized compounds in DMF and chloroform. The transition to pyridine is accompanied by a strong hypsochromic shift of the Q bands of the synthesized metal phthalocyanines, and the spectra of solutions in concentrated sulfuric acid are characterized by a bathochromic shift of the Q bands of all the compounds considered by more than 100 nm. All the phthalocyanines considered in this work have luminescent properties. It is noted that the introduction of nitro groups into the molecule of mixed-substituted zinc phthalocyanine with trimethylphenoxy and nitro groups sharply increases the Stokes shift while maintaining the quantum yield, i.e. without losing the luminescence efficiency. The quantum yield depends on the nature of the complexing metal and decreases in the series: ZnPc > MgPc > H2Pc. Electronic absorption spectra of Tetrakis-2,9,16,23-(2,3,5-trimethylphenoxy)tetrakis-3,10,17,24-nitrophthalocyanine in basic solvents (pyridine, DMF, DMSO) contain a single unsplit Q-band. In addition, this compound exhibits the properties of a dibasic NH-acid and forms a stable proton-transfer complex that loses its kinetic stability upon addition of n-butylamine.

For citation:

Demidova E.I., Znoyko S.A., Molchanov E.E., Maizlish V.E., Petrov O.A. Synthesis and spectral properties of phthalocyanines with 2,3,5-trimethylphenoxy and nitro groups. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 2. P. 52-61. DOI: 10.6060/ivkkt.20256802.7160.

References

Functional material on the basis of macroheterocyclic compounds. Ed. by O.I. Koifman. M.: Lenand. 2019. 302 p. (in Russian).

Koifman O.I., Ageeva T.A., Beletskaya I. P., Averin A. D., Yakushev A. A., Tomilova L.G., Dubinina T. V., Tsivadze A.Yu., Gorbunova Y. G., Martynov A. G., Konarev D. V., Khasanov S.S., Lyubovskaya R. N., Lomova T.N., Korolev V.V., Zenkevich E. I., Blaudeck Th., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V. А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsygankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Y.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Y.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles. 2020. V. 13. N 4. P. 311-467. DOI: 10.6060/ mhc200814k.

Znoyko S.A., Mayzlish V.E., Koifman O.I. Bifunctional-substituted phthalocyanines. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 1. P. 6-35 (in Russian). DOI: 10.6060/ivkkt.20246701.6859.

Danilova E.A., Galanin N.E., Islyaikin M.K., Maizlish V.E., Berezina G.R., Rumyantseva T.A., Suvorova Yu.V., Znoiko S.A., Kustova T.V. Achievements in the field of chemistry of macroheterocyclic compounds at the department of technology of fine organic synthesis. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 7. P. 111-119 (in Russian). DOI: 10.6060/ivkkt.20236607.6826j.

Znoiko S.A., Elizarova A.P., Kustova T.V., Nakonechnaya A.N. Erbium and sandwichtype lutetium complexes containing fragments of tetraanthrachino-porphirazine and substituted phthalocyanines. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 4. P. 42-51 (in Russian). DOI: 10.6060/ivkkt.20216404.6380.

Bychkova. A. N., Shishlova A.A., Kazaryan K.Y., Tikhomirova T.V., Vashurin A.S. Synthesis and properties of peripherally and nonperipherally substituted zinc and magnesium phthalocyanines based on 3/4-(4-bromo-2-((4-methoxyphenyl)diazenyl)phenoxy)phthalonitrile. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2024. V. 67. N 4. P. 17-27. DOI: 10.6060/ivkkt.20246704.6919.

Vashurin A.S., Bobrov A.V., Botnar A.A., Bychkova A.N., Gornukhina O.V., Grechin O.V., Erzunov D.A., Kovanova M.A., Ksenofontova K.V., Kuznetsov V.V., Lefedova O.V., Latypova A.R., Litova N.A., Marfin Yu.S., Pukhovskaya S.G., Tarasyuk I.A., Tikhomirova T.V., Rumyantsev E.V., Usoltsev S.D., Filippov D.V. Chemistry of liquid systems and functional materials based on coordination compounds of linear and cyclic polypyrroles. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 7. P. 76-97. DOI: 10.6060/ ivkkt.20236607.6840j.

Makhseed S., Ibrahim F., Bezzu G., McKeown N.B. The synthesis of metal-free octaazaphthalocyanine derivatives containing bulky phenoxy substituents to prevent self-association. Tetrahed. Lett. 2007. V. 48. P. 7358–7361. DOI: 10.1016/j.tetlet.2007.08.022

Agboola B.O., Ozoemena K.I. Synergistic enhancement of supercapacitance upon integration of nickel (II) oc-ta[(3,5-biscarboxylate)-phenoxy] phthalocyanine with SWCNT-phenylamine. J. Power Sources. 2010. V. 195. P. 3841–3848. DOI: 10.1016/j.jpowsour.2009.12.095.

Agboola B.O., Ozoemena K.I., Nyokong T., Fukuda T., Kobayashi N. Tuning the physico-electrochemical prop-erties of novel cobalt (II) octa[(3,5-biscarboxylate)-phenoxy]phthalocyanine complex using phenylamine-functionalised SWCNTs. Carbon. 2010. V. 48. P. 763–773. DOI: 10.1016/j.carbon.2009.10.023.

Sato H., Sakagami Y., Itoh E., Ohta K. Discotic liquid crystals of transition metal complexes 46: mesomorphism and antagonist solubility of octaphenoxyphthalocyaninato copper(II) complex substituted by oligoether chains. J. Porphyrins Phthalocyanines. 2012. V. 16. N 11. P. 1209. DOI: 10.1142/S1088424612501222.

Sanusi S.O., Antunes E., Nyokong T. Nonlinear optical behavior of metal octaphenoxy phthalocyanines: effect of distortion caused by the central metal. J. Porphyr. Phthalocyanines. 2013. 17. P. 920–927. DOI: 10.1142/S1088424613500715.

Srivishnu K.S., Banerjee D., Ramnagar R.A., Rathod J., Giribabu L., Rao V. Soma Optical, Electrochemical, Third-Order Nonlinear Optical Investigations of 3,4,5-Trimethoxy Phenyl Substituted Non-Aqueous Phthalocy-anines. Sec. Chem. Phys. Phys. Chem. 2021. V. 9. P. 1-14. DOI: 10.3389/ fchem.2021.713939.

Farajzadeh N., Pekbelgin Karaog˘lu H., Akin M., Saki N., Burkut Koçak M. Antimicrobial and antioxidant properties of novel octasubstituted phthalocyanines bear-ing (trifluoromethoxy)phenoxy groups on peripheral positions. J. Porphyr. Phthalocyanines. 2019. V. 23. P. 1–12. DOI: 10.1142/S1088424619500068.

Remichkova M., Mukova L., Nikolaeva-Glomb L., Nikolova N., Doumanova L., Mantareva V., Angelov I., Kussovski V., Galabov A.S. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) com-plexes. A J. Bioscis. 2017. V. 72. N 3-4. P. 123. DOI: 10.1515/znc-2016-0119.

Li Y., Pritchett T.M., Huang J., Ke M., Shao P., Sun W. Photophysics and Nonlinear Absorption of Peripheral-Substituted Zinc Phthalocyanines. J. Phys. Chem. A. 2008. 112. P. 7200–7207. DOI: 10.1021/jp7108835.

Kim I.J., Palanisamy M., Jeong J., Son Young-A. Synthesis of octaphenoxy substituted metallophthalocya-nines and their green color filter application in liquid crystal display. Mol. Cryst. Liq. Cryst. 2017. V. 644. P. 88–97. DOI: 10.1080/15421406.2016.1277459.

Yao C., Zhang Y., Sun W., Yu C., Li J., Yuan P. The lifetime of the triplet excited state and modulation charac-teristics of all-optical switching in phenoxy-phthalocyanines liquid. Opt. Express. 2013. V. 21. N 2. P. 2212-2219. DOI: 10.1364/ OE.21.002212.

Yoshioka M., Ohta K., Yasutake M. Flying-seed-like liquid crystals. Part 4: a novel series of bulky substituents inducing mesomorphism instead of using long alkyl chains. RSC Adv. 2015. V. 5. P. 13828-13839. DOI: 10.1039/ c4ra13474e.

Köksoy B., Durmuş M., Bulut M. Tetra- and octa-[4-(2-hydroxyethyl)phenoxy bearing novel metalfree and zinc(II) phthalocyanines: Synthesis, characterization and investigation of photophysicochemical properties. J. Lu-min. 2015. V. 161. P. 95–102. DOI: 10.1016/j.jlumin.2014.12.044.

Lakowicz J.R. Principles of Fluorescent Spectroscopy. Principles of Fluorescence Spectroscopy. Baltimore: Springer Science+Business Media, LLC. 2006. 954 p. DOI: 10.1007/ 978-0-387-46312-4.

Gogin K.K., Znoyko S.A., Nakonechnaya A.N., Kusto-va T.V., Akopova O.B., Bumbina N.V., Usol’tseva N.V. Synthesis and Properties of Tetra[4,5](2,4,5-Trichlorophenoxy)Phthalocyanine Metal Complexes. Liq. Cryst. Appl. 2020. V. 20. N 4. P. 35–44. DOI: 10.18083/LCAppl.2020.4.35.

Petrov O.A. Destruction of porphyrazines in organic protonacceptor media. Russ. J. Phys. Chem. (A). 2022. V. 96. N 3. P. 470-477. DOI: 10.31857/S0044453722030207.

Petrov O.A. Kinetic regularities of slow proton transfer from β-substituted porphyrazines to organic bases. Russ. J. Phys. Chem. A. 2021. V. 95. N 4. P. 696-704. DOI: 10.31857/ S0044453722030207.

Handbook of Chemistry and Physics. Ed. by W.M. Haynes. New York: CHC. 2013. 2668 р.

Published
2024-12-10
How to Cite
Demidova, E. I., Znoyko, S. A., Molchanov, E. E., Maizlish, V. E., & Petrov, O. A. (2024). SYNTHESIS AND SPECTRAL PROPERTIES OF PHTHALOCYANINES WITH 2,3,5-TRIMETHYLPHENOXY AND NITRO GROUPS. ChemChemTech, 68(2), 52-61. https://doi.org/10.6060/ivkkt.20256802.7160
Section
CHEMISTRY (inorganic, organic, analytical, physical, colloid and high-molecular compounds)

Most read articles by the same author(s)