STUDY OF THE EFFECT OF H-ZSM-5 ZEOLITE ACIDITY ON THE PROCESS OF CATALYTIC TRANSFORMATION OF N-BUTANOL INTO HYDROCARBONS
Abstract
The article is devoted to study of influence of the H-ZSM-5 zeolite acdity in the n-butanol to hydrocarbons catalytic transformation process. Four H-ZSM-5 samples were synthesized by hydrothermal method using different gel compositions. Synthesized samples were characterized by similar values of the micropores and mesopores specific surface areas 300-318 m2/g and 59-82 m2/g. However, the Si/Al ratio in the samples varied in the range from 24 to 270, which contributed to a change in surface acidity from 0.1 to 1.6 mmol/g. Obtained samples with different acidic properties were tested in butanol to hydrocarbons transformation process provided at 400°C and 0.3 kg(BuOH)/((kg(Cat)·h) weight hourly space velocity. The novelty of the article is the determination of the correlation between the acidity of H-ZSM-5 and its activity in n-butanol catalytic transformation. It was found that an increase in the acidity of H-ZSM-5 zeolite surface promotes an increase in the rate of n-butanol transformation from 0.16 kg (BuOH)/((kg(Cat)·h) to 0.27 kg(BuOH)/((kg(Cat)·h). Zeolite samples with acid site concentrations of 0.1 mmol/g and 0.6 mmol/g were characterized by the absence of deactivation within 24 h, zeolite samples with the acidity of 1.2 mmol(NH3)/g and 1.6 mmol(NH3)/g were characterized by a decrease in activity by 15% and 52% due to an increase in polyaromatic hydrocarbons formation rate. An increase in the acidity of the zeolite from 0.1 to 1.6 mmol(NH3)/g leads to an increase in the aromatic hydrocarbons concentration from 12 wt.% to 55 wt.%. An increase in alkanes concentration from 14 wt.% to 32 wt.% was also observed, while the concentration of unsaturated hydrocarbons decreased from 74 wt.% to 11 wt.%. Based on the obtained data, the correlation of the initial zeolite activity in n-butanol transformation into hydrocarbons on the concentration of the active sites was determined.
References
Ebadian M., Van Dyk S., McMillan J.D., Saddler J. Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy. 2020. V. 147. P. 111906. DOI: 10.1016/J.ENPOL.2020.111906.
Pugazhendhi A., Mathimani T., Varjani S., Rene E.R., Kumar G., Kim S.H., Yoon J.J. Biobutanol as a promis-ing liquid fuel for the future - recent updates and perspectives. Fuel. 2019. V. 253. P. 637–646. DOI: 10.1016/J.FUEL.2019.04.139.
Kuznetsov B.N., Chesnokov N.V., Sudakova I.G., Garyntseva N.V., Kuznetsova S.A., Malyar Y.N., Djakovitch L. Green catalytic processing of native and organosolv lignins. Catalysis Today. 2018. V. 309. P. 18–30. DOI: 10.1016/J.CATTOD.2017.11.036.
Tsai T.Y., Lo Y.C., Dong C., Nagarajan D., Chang, J.S., Lee D.J. Biobutanol production from lignocellulosic bio-mass using immobilized Clostridium acetobutylicum. Appl. Energy. 2020. V. 277. P. 115531. DOI: 10.1016/J.APENERGY.2020.115531.
Etteh C.C., Ibiyeye A.O., Jeland F.B., Rasheed A.A., Ette O.J., Victor I. Production of biobutanol using Clos-tridia Spp through novel ABE continuous fermentation of selected waste streams and industrial by-products. Sci. Af-rican. 2021. V. 12. P. e00744. DOI: 10.1016/J.SCIAF.2021.E00744.
Larina O.V., Valihura K.V., Kyriienko P.I., Vlasenko N.V., Bala-kin D.Y., Khalakhan I., Orlyk S.M. Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor. Appl. Catal. A: Gen. 2019. V. 588. P. 117265. DOI: 10.1016/J.APCATA.2019.117265.
Kella T., Shee D. Enhanced selectivity of benzene-toluene-ethyl benzene and xylene (BTEX) in direct con-version of n-butanol to aromatics over Zn modified HZSM5 catalysts. Micropor. Mesopor. Mater. 2021. V. 323, P. 111216. DOI: 10.1016/J.MICROMESO.2021.111216.
Doluda V.Yu., Bykov A.V., Sulman M.G., Sidorov A.I., Lakina N.V., Sulman E.M. Peculiarities of small strained alicycle compounds formation in catalytic transformation of methanol over zeolite H-ZSM-5. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. P. 74–80 (in Russian). DOI: 10.6060/ivkkt.20186112.5730.
Doluda V.Yu., Sulman M.G., Matveeva V.G., Lakina N.V., Sulman E.M. Modification of alumosilicate H-ZSM-5 and investigation of its catalytic activity in transformation process of methanol to hydrocarbons. Chem-ChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 2. P. 79-82 (in Russian).
Rebrov E., Hu G. Novel Zeolite Catalysts for Methanol to Hydrocarbon Transformation. Adv. Nanomat. Catal. Energy: Synth., Character. Applicat. 2019. P. 321–356. DOI: 10.1016/B978-0-12-814807-5.00009-7.
Kolesnichenko N.V., Khivrich N., Obukhova T.K., Batova I., Bondarenko G.N. Effect of magnesium on the catalytic properties of polymetallic zeolite catalysts for conversion of dimethyl ether to light olefins. Micropor. Mesopor. Mater. 2020. V. 298. P. 110087. DOI: 10.1016/J.MICROMESO.2020.110087.
Golubev K.B., Batova T.I., Kolesnichenko N.V., Maximov A.L. Synthesis of C2–C4 olefins from methanol as a product of methane partial oxidation over zeolite catalyst. Catal. Commun. 2019. V. 129. P. 105744. DOI: 10.1016/J.CATCOM.2019.105744.
Williams C., Makarova M.A., Malysheva L.V., Paukshtis E.A., Talsi, E.P., Thomas J.M., Zamaraev K.I. Kinetic studies of catalytic dehydration of tert-butanol on zeolite NaH-ZSM-5. J. Catal. 1991. V. 127. N 1. P. 377–392. DOI:10.1016/0021-9517(91)90233-T.
Gunst D., Alexopoulos K., van der Borght K., John M., Galvita V., Reyniers M.F., Verberckmoes A. Study of butanol conversion to butenes over H-ZSM-5: Effect of chemical structure on activity, selectivity and reaction pathways. Appl. Catal. A: Gen. 2017. V. 539. P. 1–12. DOI: 10.1016/J.APCATA.2017.03.036.
Tang G., Li M., Wang B., Fang Y., Tan T. Selective conversion of butanol into liquid branched olefins over zeolites. Micropor. Mesopor. Mater. 2018. V. 265. P. 172–178. DOI: 10.1016/J.MICROMESO.2018.02.017.
Varvarin A.M., Khomenko K.M., Brei V.V. Сonversion of n-butanol to hydrocarbons over H-ZSM-5, H-ZSM-11, H-L and H-Y zeolites. Fuel. 2013. V. 106. P. 617–620. DOI: 10.1016/J.FUEL.2012.10.032.
Wang J., Li J., Xu S., Zhi Y., Wei Y., He Y., Liu Z. Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strength on reaction and deactivation mechanism. Chinese J. Catal. 2015. V. 36. N 8. P. 1392–1402. DOI: 10.1016/S1872-2067(15)60953-6.
Gao J., Ji K., Zhou H., Xun J., Liu Z., Zhang K., Liu P. Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction. Chinese J. Chem. Eng. 2021. P. 1-8. DOI: 10.1016/J.CJCHE.2020.09.008.
John M., Alexopoulos K., Reyniers M.F., Marin G.B. Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling. J. Catal. 2015. V. 330. P. 28–45. DOI: 10.1016/J.JCAT.2015.07.005.
Nash C.P., Ramanathan A., Ruddy D.A., Behl M., Gjersing E., Griffin M., Hensley J.E. Mixed alcohol de-hydration over Brønsted and Lewis acidic catalysts. Appl. Catal. A: Gen. 2016. V. 510. P. 110–124. DOI: 10.1016/J.APCATA.2015.11.019.
Tsunoji N., Osuga R., Yasumoto M., Yokoi T. Controlling hydrocarbon oligomerization in phosphorus-modified CHA zeolite for a long-lived methanol-to-olefin catalyst. Appl. Catal. A: Gen. 2021. V. 620. P. 118176. DOI: 10.1016/J.APCATA.2021.118176.
Zhang Z., Liu B., Liu F., Zhao Y., Xiao T. Effect of nickel loading on the performance of nano- and micro-sized ZSM-5 catalysts for methanol to hydrocarbon conversion. Catal. Today. 2018. V. 317. P. 21–28. DOI: 10.1016/J.CATTOD.2018.03.044.